Способы построения некоторых лекальных кривых. Геометрические кривые Чертежи парабол

Для того, чтобы начертить график функции в Прямоугольной системе координат, нам необходимы две перпендикулярные прямые xOy (где O это точка пресечения x и y), которые называются "координатными осями", и нужна единица измерения.

У точки в этой системе есть две координаты.
M(x, y): M это название точки, x это абсцисса и она измеряется по Ox, а y это ордината и мерится по Oy.

Если мы рассмотрим функцию f: A -> B (где A - область определения, B - область значений функции), тогда точку на графике данной функции можно представить в форме P(x, f(x)).

Пример
f:A -> B, f(x) = 3x - 1
If x = 2 => f(2) = 3×2 - 1 = 5 => P(2, 5) ∈ Gf (где Gf это график данной функции).

Квадратичная функция

Стандартная форма: f(x) = ax 2 + bx + c

Вершинная форма: $f(x)=(a+\frac{b}{2a})^2-\frac{\Delta}{4a}$
где Δ = b 2 - 4ac

Если a > 0 , то минимальным значением f(x) будет $-\frac{\Delta}{4a}$ , которое получается, если $x=-\frac{b}{2a}$. Графиком будет выпуклая парабола , вершина которой (точка, в которой она меняет направление) это $V(-\frac{b}{2a};-\frac{\Delta}{4a})$.

Если a < 0 , то минимальное значение f(x) будет $-\frac{\Delta}{4a}$ , которое получается, если $x=-\frac{b}{2a}$. Графиком будет вогнутая парабола , вершина которой это$V(-\frac{b}{2a};-\frac{\Delta}{4a})$.

Парабола симметрична относительно прямой, которую она пересекает $x=-\frac{b}{2a}$ и которая называется "осью симметрии" .
Именно поэтому, когда мы присваиваем знаячения x , то вибираем их симметричными относительно $-\frac{b}{2a}$.
При построении графика, точки пересечения с осями координат очень важны.

|. Точка, расположенная на оси Ox имеет форму P(x, 0) , потому что расстояние от неё до Ox равно 0. Если точка находиться и на Ox и на графике функции,то она также имеет вид P(x, f(x)) ⇒ f(x) = 0 .

Таким образом, для того чтобы найти координаты точки пересечения с осью Ox , мы должны решить уравнение f(x)=0 . Мы получаем уравнение a 2 + bx + c = 0 .

Решение уравнения зависит от знака Δ = b 2 - 4ac .

Иммем следующие варианты:

1) Δ < 0 ,
тогда у уравнения нет решений в R (множестве действительных чисел) и график не пересекает Ox . Форма графика будет:

2) Δ = 0 ,
тогда у уравнения два решения $x_1=x_2=-\frac{b}{2a}$
График касается оси Ox в вершине параболы. Форма графика будет:

3) Δ > 0 ,
тогда у уравнения два разных решения.

$x_1=\frac{-b-\sqrt{\Delta}}{2a}$ и $x_2=\frac{-b+\sqrt{\Delta}}{2a}$

График функции будет пересекать ось Ox в точках M(x 1 и Ox . Форма графика будет:

||. Точка, находящаяся на оси Oy имеет форму R(0, y) , потому что расстояние от Oy равно 0 . Если точка находиться и на Oy и на графике функции, то она также имеет форму R(x, f(x)) ⇒ x = 0 ⇒ R(0, f(0)) .

В случае квадратичной функции,
f(0) = a×0 2 + b×0 + c ⇒ R(0, c).

Необходимые шаги для построения графика квадратичной функции

f: R → R
f(x) = ax 2 + bx + c

1. Составляем таблицу переменных, куда заносим некоторые важные значения x .

2. Вычисляем координаты вершины$V(-\frac{b}{2a};-\frac{\Delta}{4a})$.

3. Также записываем 0 в таблицу и нулевые значения симметричные $-\frac{b}{2a}$.

4. Мы определяем точку пересечения с осью Ox, решая уравнение f(x)=0 и записываем корни x 1 и x 2 в таблице.
Δ > 0 ⇒

Δ < 0 ⇒ точек пересечения нет. В этом случае мы выберем два удобных значения, которые симметричны $-\frac{b}{2a}$

Δ = 0 ⇒ график касается Ox прямо в вершине параболы. Мы снова выберем два удобных значения, симметричных $-\frac{b}{2a}$. Для лучшего определения формы графика мы может выбрать другие пары значений для x , но они должны быть симметричны $-\frac{b}{2a}$.

5. Мы наносим эти значения на систему координат и строим график, соединяя эти точки.

Пример 1
f: R → R
f(x) = x 2 - 2x - 3
a = 1, b = -2, c = -3

$-\frac{b}{2a}=\frac{2}{2}=1$ ⇒ V(1; -4)

1. $-\frac{\Delta}{4a}=-\frac{16}{4}=-4$

2. f(0) = -3
Симметричное 0 значение относительно 1 равно 2.
f(2) = -3

3. f(x) = 0 ⇒ x 2 - 2x - 3 = 0
Δ = 16 > 0
$x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-4}{2}=-1$

$x_1=\frac{2+4}{2}=3$

Мы нашли точки:
A(-1; 0)
B(0; -3)
V(1; -4)
C(2; -3)
D(3; 0)

График будет иметь вид:

Пример 2
f: R → R
f(x) = -x 2 - 2x + 8
a = -1, b = -2, c = 8
Δ = b 2 - 4×a×c = (-2) 2 - 4×(-1)×8 = 36
$-\frac{b}{2a}=\frac{2}{-2}=-1$ ⇒ V(-1; 9)

1. $-\frac{\Delta}{4a}=-\frac{-36}{-4}=9$

2. f(0) = 8
f(-2) = 8 (симметричное 0 значение относительно -1 равно -2)

3. f(x) = 0 ⇒ -x 2 - 2x + 8 = 0
Δ = 36
x 1 = 2 и x 2 = -4

A(-4; 0)
B(-2; 8)
V(-1; 9)
C(0; 8)
D(2; 0)

Пример 3
f: R → R
f(x) = x 2 - 4x + 4
a = 1, b = -4, c = 4
Δ = b 2 - 4×a×c = (-4) 2 - 4×1×4 = 0
$-\frac{b}{2a}=\frac{4}{2}=2$ ⇒ V(2; 0)

1. $-\frac{\Delta}{4a}=0$

2. f(0) = 4
f(4) = 4 (симметричное 0 значение относительно 2 равно 4)

3. f(x) = 0 ⇒ x 2 - 4x + 4 = 0
Δ = 0
x 1 = x 2 = $-\frac{b}{2a}$ = 2

A(-2; 9)
B(0; 4)
V(2; 0)
C(4; 4)
D(5; 9)

Пример 4
f: R → R
f(x) = -x 2 + 4x - 5
a = -1, b = 4, c = -5
Δ = b 2 - 4×a×c = 4 2 - 4×(-1)×(-5) = 16 - 20 = -4
$-\frac{b}{2a}=\frac{-4}{-2}=2$ ⇒ V(2; -1)

1. $-\frac{\Delta}{4a}=-\frac{-4}{-4}=-1$

2. f(0) = -5
f(4) = -5 (симметричное 0 значение относительно 2 равно 4)

3. f(x) = 0 ⇒ -x 2 + 4x - 5 = 0, Δ < 0
У этого уравнения нет решений. Мы выбрали симметричные значения вокруг 2

A(-1; -10)
B(0; 5)
V(2; -1)
C(4; -5)
D(5; -10)

Если область определения не R (множество действительных чисел), а какой-то интервал, то мы стираем часть графика, которая соответствует тем значениям x, которые не находятся в данном интервале. Необходимо записать конечные точки интервала в таблице.

Пример 5
f: }

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.