Особенности восприятия человека. Зрение


О разделе

Этот раздел содержит статьи, посвященные феноменам или версиям, которые так или иначе могут быть интересны или полезны исследователям необъясненного.
Статьи разделены по категориям:
Информационные. Содержат полезную для исследователей информацию из различных областей знаний.
Аналитические. Включают аналитику накопленной информации о версиях или феноменах, а также описания результатов проведенных экспериментов.
Технические. Аккумулируют информацию о технических решениях, которые могут найти применение в сфере изучения необъясненных фактов.
Методики. Содержат описания методик, применяемых участниками группы при расследовании фактов и исследовании феноменов.
Медиа. Содержат информацию об отражении феноменов в индустрии развлечений: фильмах, мультфильмах, играх и т.п.
Известные заблуждения. Разоблачения известных необъясненных фактов, собранные в том числе из сторонних источников.

Тип статьи:

Информационные

Особенности восприятия человека. Зрение

Человек не может видеть в полной темноте. Для того, чтобы человек увидел предмет, необходимо, чтобы свет отразился от предмета и попал на сетчатку глаза. Источники света могут быть естественные (огонь, Солнце) и искусственные (различные лампы). Но что представляет собой свет?

Согласно современным научным представлениям, свет представляет собой электромагнитные волны определенного (достаточно высокого) диапазона частот. Эта теория берет свое начало от Гюйгенса и подтверждается многими опытами (в частности, опытом Т. Юнга). При этом в природе света в полной мере проявляется карпускулярно-волновой дуализм , что во многом определяет его свойства: при распространении свет ведет себя как волна, при излучении или поглощении – как частица (фотон). Таким образом, световые эффекты, происходящие при распространении света (интерференция , дифракция и т.п.), описываются уравнениями Максвелла , а эффекты, проявляющиеся при его поглощении и излучении (фотоэффект , эффект Комптона) – уравнениями квантовой теории поля .

Упрощенно, глаз человека представляет собой радиоприемник, способный принимать электромагнитные волны определенного (оптического) диапазона частот. Первичными источниками этих волн являются тела, их излучающие (солнце, лампы и т.п.), вторичными – тела, отражающие волны первичных источников. Свет от источников попадает в глаз и делает их видимыми человеку. Таким образом, если тело является прозрачным для волн видимого диапазона частот (воздух, вода, стекло и т.п.), то оно не может быть зарегистрировано глазом. При этом глаз, как и любой другой радиоприемник, «настроен» на определенный диапазон радиочастот (в случае глаза это диапазон от 400 до 790 терагерц), и не воспринимает волны, имеющие более высокие (ультрафиолетовые) или низкие (инфракрасные) частоты. Эта «настройка» проявляется во всем строении глаза – начиная от хрусталика и стекловидного тела, прозрачных именно в этом диапазоне частот, и заканчивая величиной фоторецепторов, которые в данной аналогии подобны антеннам радиоприемников и имеют размеры, обеспечивающие максимально эффективный прием радиоволн именно этого диапазона.

Все это в совокупности определяет диапазон частот, в котором видит человек. Он называется диапазоном видимого излучения.

Видимое излучение - электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок спектра с длиной волны приблизительно от 380 (фиолетовый) до 740 нм (красный). Такие волны занимают частотный диапазон от 400 до 790 терагерц. Электромагнитное излучение с такими частотами также называется видимым светом, или просто светом (в узком смысле этого слова). Наибольшую чувствительность к свету человеческий глаз имеет в области 555 нм (540 ТГц), в зелёной части спектра.

Белый свет, разделённый призмой на цвета спектра

При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разным углом. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены световыми волнами одной длины (или очень узким диапазоном), называются спектральными цветами. Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице:

Чем человек видит

Благодаря зрению мы получаем 90% информации об окружающем мире, поэтому глаз - один из важнейших органов чувств.
Глаз можно назвать сложным оптическим прибором. Его основная задача - "передать" правильное изображение зрительному нерву.

Строение глаза человека

Роговица - прозрачная оболочка, покрывающая переднюю часть глаза. В ней отсутствуют кровеносные сосуды, она имеет большую преломляющую силу. Входит в оптическую систему глаза. Роговица граничит с непрозрачной внешней оболочкой глаза - склерой.

Передняя камера глаза - это пространство между роговицей и радужкой. Она заполнена внутриглазной жидкостью.

Радужка - по форме похожа на круг с отверстием внутри (зрачком). Радужка состоит из мышц, при сокращении и расслаблении которых размеры зрачка меняются. Она входит в сосудистую оболочку глаза. Радужка отвечает за цвет глаз (если он голубой - значит, в ней мало пигментных клеток, если карий - много). Выполняет ту же функцию, что диафрагма в фотоаппарате, регулируя светопоток.

Зрачок - отверстие в радужке. Его размеры обычно зависят от уровня освещенности. Чем больше света, тем меньше зрачок.

Хрусталик - "естественная линза" глаза. Он прозрачен, эластичен - может менять свою форму, почти мгновенно "наводя фокус", за счет чего человек видит хорошо и вблизи, и вдали. Располагается в капсуле, удерживается ресничным пояском. Хрусталик, как и роговица, входит в оптическую систему глаза. Прозрачность хрусталика глаза человека превосходна - пропускается большая часть света с длинами волн между 450 и 1400 нм. Свет с длиной волны выше720 нм не воспринимается. Хрусталик глаза человека почти бесцветен при рождении, но приобретает желтоватый цвет с возрастом. Это предохраняет сетчатку глаза от воздействия ультрафиолетовых лучей.

Стекловидное тело - гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза. Стекловидное тело поддерживает форму глазного яблока, участвует во внутриглазном обмене веществ. Входит в оптическую систему глаза.

Сетчатка - состоит из фоторецепторов (они чувствительны к свету) и нервных клеток. Клетки-рецепторы, расположенные в сетчатке, делятся на два вида: колбочки и палочки. В этих клетках, вырабатывающих фермент родопсин, происходит преобразование энергии света (фотонов) в электрическую энергию нервной ткани, т.е. фотохимическая реакция.

Склера - непрозрачная внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся 6 глазодвигательных мышц. В ней находится небольшое количество нервных окончаний и сосудов.

Сосудистая оболочка - выстилает задний отдел склеры, к ней прилегает сетчатка, с которой она тесно связана. Сосудистая оболочка ответственна за кровоснабжение внутриглазных структур. При заболеваниях сетчатки очень часто вовлекается в патологический процесс. В сосудистой оболочке нет нервных окончаний, поэтому при ее заболевании не возникают боли, обычно сигнализирующие о каких-либо неполадках.

Зрительный нерв - при помощи зрительного нерва сигналы от нервных окончаний передаются в головной мозг.

Человек не рождается с уже развитым органом зрения: в первые месяцы жизни происходит формирование мозга и зрения, и примерно к 9 месяцам они способны почти моментально обрабатывать поступающую зрительную информацию. Для того чтобы видеть, необходим свет.

Световая чувствительность человеческого глаза

Способность глаза воспринимать свет и распознавать различной степени его яркости называется светоощущением, а способность приспосабливаться к разной яркости освещения - адаптацией глаза; световая чувствительность оценивается величиной порога светового раздражителя.
Человек с хорошим зрением способен разглядеть ночью свет от свечи на расстоянии нескольких километров. Максимальная световая чувствительность достигается после достаточно длительной темновой адаптации. Её определяют под действием светового потока в телесном угле 50° при длине волны 500 нм (максимум чувствительности глаза). В этих условиях пороговая энергия света около 10−9 эрг/с, что эквивалентно потоку нескольких квантов оптического диапазона в секунду через зрачок.
Вклад зрачка в регулировку чувствительности глаза крайне незначителен. Весь диапазон яркостей, которые наш зрительный механизм способен воспринять, огромен: от 10−6 кд м² для глаза, полностью адаптированного к темноте, до 106 кд м² для глаза, полностью адаптированного к свету Механизм такого широкого диапазона чувствительности кроется в разложении и восстановлении фоточувствительных пигментов в фоторецепторах сетчатки - колбочках и палочках.
В глазу человека содержатся два типа светочувствительных клеток (рецепторов): высоко чувствительные палочки, отвечающие за сумеречное (ночное) зрение, и менее чувствительные колбочки, отвечающие за цветное зрение.

Нормализованные графики светочувствительности колбочек человеческого глаза S, M, L. Пунктиром показана сумеречная, «чёрно-белая» восприимчивость палочек.

В сетчатке глаза человека есть три вида колбочек, максимумы чувствительности которых приходятся на красный, зелёный и синий участки спектра. Распределение типов колбочек в сетчатке неравномерно: «синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом. Соответствие типов колбочек трём «основным» цветам обеспечивает распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что способствует явлению метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета.

Равномерное раздражение всех трёх элементов, соответствующее средневзвешенному дневному свету, также вызывает ощущение белого цвета.

За цветовое зрение человека отвечают гены, кодирующие светочувствительные белки опсины. По мнению сторонников трёхкомпонентной теории, наличие трёх разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия.

У большинства млекопитающих таких генов только два, поэтому они имеют черно-белое зрение.

Чувствительный к красному свету опсин кодируется у человека геном OPN1LW.
Другие опсины человека кодируют гены OPN1MW, OPN1MW2 и OPN1SW, первые два из них кодируют белки, чувствительные к свету со средними длинами волны, а третий отвечает за опсин, чувствительный к коротковолновой части спектра.

Поле зрения

Поле зрения - пространство, одновременно воспринимаемое глазом при неподвижном взоре и фиксированном положении головы. Оно имеет определенные границы, соответствующие переходу оптически деятельной части сетчатки в оптически слепую.
Поле зрения искусственно ограничивается выступающими частями лица - спинкой носа, верхним краем глазницы. Кроме того, его границы зависят от положения глазного яблока в глазнице. Кроме этого, в каждом глазу здорового человека существует область сетчатки, не чувствительная к свету, которая называется слепым пятном. Нервные волокна от рецепторов к слепому пятну идут поверх сетчатки и собираются в зрительный нерв, который проходит сквозь сетчатку на другую её сторону. Таким образом, в этом месте отсутствуют световые рецепторы.

На этом конфокальном микроснимке диск зрительного нерва показан черным, клетки, выстилающие кровеносные сосуды - красным, а содержимое сосудов - зеленым. Клетки сетчатки отобразились синими пятнами.

Слепые пятна в двух глазах находятся в разных местах (симметрично). Этот факт, а так же то, что мозг корректирует воспринимаемое изображение, объясняет почему при нормальном использовании обоих глаз они незаметны.

Чтобы наблюдать у себя слепое пятно, закройте правый глаз и левым глазом посмотрите на правый крестик, который обведён кружочком. Держите лицо и монитор вертикально. Не сводя взгляда с правого крестика, приближайте (или отдаляйте) лицо от монитора и одновременно следите за левым крестиком (не переводя на него взгляд). В определённый момент он исчезнет.

Этим способом можно также оценить приблизительный угловой размер слепого пятна.

Прием для обнаружения слепого пятна

Выделяют также парацентральные отделы поля зрения. В зависимости от участия в зрении одного или обоих глаз, различают монокулярное и бинокулярное поле зрения. В клинической практике обычно исследуют монокулярное поле зрения.

Бинокулярное и Стереоскопическое зрение

Зрительный анализатор человека в нормальных условиях обеспечивает бинокулярное зрение, то есть зрение двумя глазами с единым зрительным восприятием. Основным рефлекторным механизмом бинокулярного зрения является рефлекс слияния изображения - фузионный рефлекс (фузия), возникающий при одновременном раздражении функционально неодинаковых нервных элементов сетчатки обоих глаз. Вследствие этого возникает физиологическое двоение предметов, находящихся ближе или дальше фиксируемой точки (бинокулярная фокусировка). Физиологичное двоение (фокус) помогает оценивать удалённость предмета от глаз и создает ощущение рельефности, или стереоскопичности, зрения.

При зрении одним глазом восприятие глубины (рельефной удалённости) осуществляется гл. обр. благодаря вторичным вспомогательным признакам удаленности (видимая величина предмета, линейная и воздушная перспективы, загораживание одних предметов другими, аккомодация глаза и т. д..).

Проводящие пути зрительного анализатора
1 - Левая половина зрительного поля, 2 - Правая половина зрительного поля, 3 - Глаз, 4 - Сетчатка, 5 - Зрительные нервы, 6 - Глазодвигательный нерв, 7 - Хиазма, 8 - Зрительный тракт, 9 - Латеральное коленчатое тело, 10 - Верхние бугры четверохолмия, 11 - Неспецифический зрительный путь, 12 - Зрительная кора головного мозга.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.

Изменение зрения с возрастом

Элементы сетчатки начинают формироваться на 6–10 неделе внутриутробного развития, окончательное морфологическое созревание происходит к 10–12 годам. В процессе развития организма существенно меняются цветоощущения ребенка. У новорожденного в сетчатке функционируют только палочки, обеспечивающие черно-белое зрение. Количество колбочек невелико и они еще не зрелы. Распознавание цветов в раннем возрасте зависит от яркости, а не от спектральной характеристики цвета. По мере созревания колбочек дети сначала различают желтый, потом зеленый, а затем красный цвета (уже с 3 месяцев удавалось выработать условные рефлексы на эти цвета). Полноценно колбочки начинают функционировать к концу 3 года жизни. В школьном возрасте различительная цветовая чувствительность глаза повышается. Максимального развития ощущение цвета достигает к 30 годам и затем постепенно снижается.

У новорожденного диаметр глазного яблока составляет 16 мм, а его масса – 3,0 г. Рост глазного яблока продолжается после рождения. Интенсивнее всего оно растет первые 5 лет жизни, менее интенсивно – до 9-12 лет. У новорожденных форма глазного яблока более шаровидная, чем у взрослых, в результате в 90 % случаев у них отмечается дальнозоркая рефракция.

Зрачок у новорожденных узкий. Из-за преобладания тонуса симпатических нервов, иннервирующих мышцы радужной оболочки, в 6–8 лет зрачки становятся широкими, что увеличивает риск солнечных ожогов сетчатки. В 8–10 лет зрачок сужается. В 12–13 лет быстрота и интенсивность зрачковой реакции на свет становятся такими же, как у взрослого человека.

У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный, чем у взрослого, его преломляющая способность выше. Это позволяет ребенку четко видеть предмет на меньшем расстоянии от глаза, чем взрослому. И если у младенца он прозрачный и бесцветный, то у взрослого человека хрусталик имеет легкий желтоватый оттенок, интенсивность которого с возрастом может усиливаться. Это не отражается на остроте зрения, но может повлиять на восприятие синего и фиолетового цветов.

Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронны, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет формируется в возрасте от 5 дней до 3–5 месяцев.

Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и уже в последнюю очередь – цвет.
Острота зрения с возрастом повышается, улучшается и стереоскопическое зрение. Стереоскопическое зрение к 17–22 годам достигает своего оптимального уровня, причем с 6 лет у девочек острота стереоскопического зрения выше, чем у мальчиков. Поле зрения интенсивно увеличивается. К 7 годам его размер составляет приблизительно 80 % от размера поля зрения взрослого.

После 40 лет наблюдается падение уровня периферического зрения, то есть происходит сужение поля зрения и ухудшение бокового обзора.
Примерно после 50 лет сокращается выработка слезной жидкости, поэтому глаза увлажняются хуже, чем в более молодом возрасте. Чрезмерная сухость может выражаться в покраснении глаз, рези, слезотечении под действием ветра или яркого света. Это может не зависеть от обычных факторов (частые напряжения глаз или загрязненность воздуха).

С возрастом человеческий глаз начинает воспринимать окружающее более тускло, с понижением контрастности и яркости. Также может ухудшиться способность распознавать цветовые оттенки, особенно близкие в цветовой гамме. Это напрямую связано с сокращением количества клеток сетчатой оболочки, воспринимающих оттенки цвета, контрастность, яркость.

Некоторые возрастные нарушения зрения обусловлены пресбиопией, которая проявляется нечеткостью, размытостью картинки при попытке рассмотреть предметы, расположенные близко от глаз. Возможность фокусировки зрения на небольших предметах требует аккомодацию около 20 диоптрий (фокусировка на объекте в 50 мм от наблюдателя) у детей, до 10 диоптрий в возрасте 25 лет (100 мм) и уровни от 0,5 до 1 диоптрии в возрасте 60 лет (возможность фокусировки на предмете в 1-2 метрах). Считается, что это связано с ослаблением мышц, которые регулируют зрачок, при этом так же ухудшается реакция зрачков на попадающий в глаз световой поток. Поэтому возникают трудности с чтением при тусклом свете и увеличивается время адаптации при перепадах освещенности.

Так же с возрастом начинает быстрее возникать зрительное утомление и даже головные боли.

Восприятие цвета

Психология восприятия цвета - способность человека воспринимать, идентифицировать и называть цвета.

Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Первоначально исследования восприятия цвета проводились в рамках цветоведения; позже к проблеме подключились этнографы, социологи и психологи.

Зрительные рецепторы по праву считаются «частью мозга, вынесенной на поверхность тела». Неосознаваемая обработка и коррекция зрительного восприятия обеспечивает «правильность» зрения, и она же является причиной «ошибок» при оценке цвета в определенных условиях. Так, устранение «фоновой» засветки глаза (например, при разглядывании удаленных предметов через узкую трубку) существенно меняет восприятие цвета этих предметов.

Одновременное рассматривание одних и тех же несамосветящихся предметов или источников света несколькими наблюдателями с нормальным цветовым зрением, в одинаковых условиях рассматривания, позволяет установить однозначное соответствие между спектральным составом сравниваемых излучений и вызываемыми ими цветовыми ощущениями. На этом основаны цветовые измерения (колориметрия). Такое соответствие однозначно, но не взаимно-однозначно: одинаковые цветовые ощущения могут вызывать потоки излучений различного спектрального состава (метамерия).

Определений цвета, как физической величины, существует много. Но даже в лучших из них с колориметрической точки зрения часто опускается упоминание о том, что указанная (не взаимная) однозначность достигается лишь в стандартизованных условиях наблюдения, освещения и т. д., не учитывается изменение восприятия цвета при изменении интенсивности излучения того же спектрального состава (явление Бецольда - Брюкке), не принимается во внимание т. н. цветовая адаптация глаза и др. Поэтому многообразие цветовых ощущений, возникающих при реальных условиях освещения, вариациях угловых размеров сравниваемых по цвету элементов, их фиксации на разных участках сетчатки, разных психофизиологических состояниях наблюдателя и т. д., всегда богаче колориметрического цветового многообразия.

Например, в колориметрии одинаково определяются некоторые цвета (такие, как оранжевый или жёлтый), которые в повседневной жизни воспринимаются (в зависимости от светлоты) как бурый, «каштановый», коричневый, «шоколадный», «оливковый» и т. д. В одной из лучших попыток определения понятия Цвет, принадлежащей Эрвину Шрёдингеру, трудности снимаются простым отсутствием указаний на зависимость цветовых ощущений от многочисленных конкретных условий наблюдения. По Шредингеру, Цвет есть свойство спектрального состава излучений, общее всем излучениям, визуально не различимым для человека.

В силу природы глаза, свет, вызывающий ощущение одного и того же цвета (например белого), то есть одну и ту же степень возбуждения трёх зрительных рецепторов, может иметь разный спектральный состав. Человек в большинстве случаев не замечает данного эффекта, как бы «домысливая» цвет. Это происходит потому, что хотя цветовая температура разного освещения может совпадать, спектры отражённого одним и тем же пигментом естественного и искусственного света могут существенно отличаться и вызывать разное цветовое ощущение.

Человеческий глаз воспринимает множество различных оттенков, однако есть «запрещенные» цвета, недоступные для него. В качестве примера можно привести цвет, играющий и желтыми, и синими тонами одновременно. Так происходит потому, что восприятие цвета в глазе человека, как и многое другое в нашем организме, построено на принципе оппонентности. Сетчатка глаза имеет особые нейроны-оппоненты: некоторые из них активизируются, когда мы видим красный цвет, и они же подавляются зеленым цветом. То же самое происходит и с парой желтый-синий. Таким образом, цвета в парах красный-зеленый и синий-желтый оказывают противоположное воздействие на одни и те же нейроны. Когда источник излучает оба цвета из пары, их воздействие на нейрон компенсируется, и человек не может увидеть ни один из этих цветов. Мало того, человек не только не способен увидеть эти цвета в нормальных обстоятельствах, но и представить их.

Увидеть такие цвета можно только в рамках научного эксперимента. Например, ученые Хьюитт Крэйн и Томас Пьянтанида из Стенфордского института в Калифорнии создали специальные зрительные модели, в которых чередовались полосы «спорящих» оттенков, быстро сменяющих друг друга. Эти изображения, зафиксированные специальным прибором на уровне глаз человека, показывались десяткам добровольцев. После эксперимента люди утверждали, что в определенный момент границы между оттенками исчезали, сливаясь в один цвет, с которым раньше им никогда не приходилось сталкиваться.

Различия зрения человека и животных. Метамерия в фотографии

Человеческое зрение является трёхстимульным анализатором, то есть спектральные характеристики цвета выражаются всего в трех значениях. Если сравниваемые потоки излучения с разным спектральным составом производят на колбочки одинаковое действие, цвета воспринимаются как одинаковые.

В животном мире существуют четырёх- и даже пятистимульные цветовые анализаторы, поэтому цвета, воспринимаемые человеком одинаковыми, животным могут казаться разными. В частности, хищные птицы видят следы грызунов на тропинках к норам исключительно благодаря ультрафиолетовой люминесценции компонентов их мочи.
Похожая ситуация складывается и с системами регистрации изображений, как цифровыми, так и аналоговыми. Хотя в большинстве своём они являются трёхстимульными (три слоя эмульсии фотоплёнки, три типа ячеек матрицы цифрового фотоаппарата или сканера), их метамерия отлична от метамерии человеческого зрения. Поэтому цвета, воспринимаемые глазом как одинаковые, на фотографии могут получаться разными, и наоборот.

Источники

О. А. Антонова, Возрастная анатомия и физиология, Изд.: Высшее образование, 2006 г.

Лысова Н. Ф. Возрастная анатомия, физиология и школьная гигиена. Учеб. пособие / Н. Ф. Лысова, Р. И. Айзман, Я. Л. Завьялова, В.

Погодина А.Б., Газимов А.Х., Основы геронтологии и гериатрии. Учеб. Пособие, Ростов-на-Дону, Изд. Феникс, 2007 – 253 с.

Восприятие цвета – сложный процесс, обусловленный физическими и психологическими стимулами. С одной стороны ощущение цвета вызывается волнами определенной длины, существующими объективно и независимо от нас, с другой стороны – восприятие цвета невозможно без посредничества глаз. Это создает впечатление, что цвет существует лишь в восприятии.

Современная психология выделяет в цветовом зрении два качественных уровня: ощущение цвета и восприятие цвета, а творческая тематика курса требует третьего уровня: чувства цвета. Если ощущение понимается как простейший психологический акт, непосредственно обусловленный физиологией зрения, а восприятие – как более сложный процесс, определенный рядом закономерностей психологического характера, то чувство цвета в наибольшей степени относится к эмоциональной и эстетической сфере.

Ощущение цвета как простейший зрительный акт свойственно и некоторым видам животных, обладающих цветовым зрением. Но для человека чистого ощущения цвета не существует. Мы всегда видим цвет в определенном окружении, на том или ином фоне, в связи с предметной формой. В ощущении принимает участие и сознание. На качество восприятия цвета оказывает влияние состояние глаза, установка наблюдателя, его возраст, воспитание, общее эмоциональное состояние.

Однако все это лишь до известной степени изменяют качество восприятия, они только смещают его в ту или иную сторону. Красный цвет, например, будет в любых обстоятельствах восприниматься как красный, за исключением случаев патологии зрения. Рассмотрим некоторые особенности восприятия цвета.

ЧУВСТВИТЕЛЬНОСТЬ ГЛАЗА. Так как основные различия между воспринимаемыми цветами сводятся к различию по светлоте, цветовому тону и насыщенности, то важно установить способность глаза различать изменения цвета по каждому из этих параметров.

При исследовании чувствительности глаза к изменению цветового тона было установлено, что глаз неодинаково реагирует на изменение длины волны в различных участках спектра. Изменение цветности наиболее заметно в четырех частях спектра, а именно в зелено-голубой, оранжево-желтой, оранжево-красной и сине-фиолетовой. К средней зеленой части спектра и к его концу, красному и фиолетовому, глаз наименее чувствителен. При определенных условиях освещения человеческий глаз различает до 150 цветовых оттенков. Число замечаемых глазом различий по насыщенности неодинаково для красной, желтой и синей поверхности и колеблется от 7 до 12 градаций.

Наиболее чувствителен глаз к изменению яркости – различает до 600 градаций. Способность к различию цветовых тонов не является постоянной и зависит от изменений цветовых объектов по насыщенности и яркости. При уменьшении насыщенности и увеличении или уменьшении яркости мы различаем цветовые тона хуже. При минимальной насыщенности хроматические цвета сводятся к двум различным тонам желтоватому (теплому) и синеватому (холодному). Подобным образом обедняется цветовая гамма и тогда, когда хроматические цвета становятся очень близки к белому или черному. Поэтому нельзя определить возможное общее число воспринимаемых глазом цветов путем простого перемножения количеств различных цветовых тонов, степеней насыщенности и светлоты.

Чувствительность глаза к отдельным цветам изменяется не только количественно, но также и качественно в зависимости от освещенности. При слабой освещенности не только понижается чувствительность глаза к различию цветовых тонов вообще, но и происходит смещение этой способности в сторону коротковолновой части спектра (синие и фиолетовые)

СМЕШЕНИЕ ЦВЕТОВ. Смешение цветов – одна из самых главных проблем теории цвета, потому что со смешением цветов человеческое зрение имеет дело постоянно. Ощущение цвета поверхности вызывается в нас не потоком световых волн одной какой-либо длины, а совокупностью различных по длине световых волн. Какой цвет мы при этом воспринимаем, будет зависеть от того, какой длины и интенсивности волны преобладают в потоке излучаемого света.

Если два окрашенных пятна располагаются рядом, то на определенном расстоянии они создают впечатление единого цвета. Такое смешение носит название АДДИТИВНОГО (слагательного). Если же на окрашенную поверхность накладывается другая цветная прозрачная пластинка, тогда смешение происходит в результате вычитания или отсеивания некоторых волн. Такое смешение называется вычитательным или СУБСТРАКТИВНЫМ. Выявлены следующие три основных закона оптического смешения.

1. Для всякого цвета имеется другой, дополнительный к нему. Будучи смешаны, эти два цвета дают в сумме ахроматический (белый или серый) цвет.

2. Смешиваемые (не дополнительные) цвета, лежащие по цветовому кругу ближе друг к другу, чем дополнительные, вызывают ощущение нового цвета, лежащего между смешиваемыми цветами. Красный и желтый дают оранжевый. Второй закон имеет наибольшее практическое значение. Из него вытекает тот факт, что путем смешения трех основных цветов в различных пропорциях можно получить практически любой цветовой тон.

3. Третий закон говорит о том, что одинаковые цвета дают и одинаковые оттенки смеси. Здесь имеется в виду случаи смешения одинаковых по цвету, но разных по насыщенности или по светлоте, а также смешение хроматического с ахроматическим.

ВЗАИМОДОПОЛНИТЕЛЬНЫЕ ЦВЕТА. Термин взаимодополнительные цвета весьма популярен в искусствоведении. Всегда отмечается исключительная роль этих цветов в создании цветовой гармонии.

Обычно ими называют три пары: красный – зеленый, синий – оранжевый, желтый – фиолетовый, не принимая во внимание, что каждое из этих родовых названий включает в себя большой диапазон цветовых тонов и не всякий зеленый является взаимодотолнительным ко всякому красному.

В цветоведении взаимодополнительность цветов определяется как способность одного какого-либо цвета дополнить другой до получения ахроматического тона, т.е. белого или серого, в результате оптического смешения. Вычислено, что дополнительной будет каждая пара цветов, длины волн которой относятся между собой как 1: 1,25.

Будучи же сопоставлены, эти пары представляют наиболее гармоничные сочетания и взаимно повышают насыщенность и светлоту друг друга, не меняя цветового тона.

КОНТРАСТ. Контраст можно определить как противопоставление предметов или явлений, резко отличающихся друг от друга по качествам или свойствам. А суть контраста в том, что будучи вместе, эти противоположности вызывают новые впечатления, ощущения и чувства, которые не возникают при рассмотрении их отдельно.

Контрастирующие цвета способны вызвать целую цепь новых ощущений. Например, белое и черное вызывают некоторый шок от внезапного перехода от белизны к черноте, кажущимися изменениями размеров и светлоты, возникновением пространственного эффекта и т.п.

Контраст – важное формообразующее средство, создает ощущение пространства. Цветовая гармония, колорит и светотень непременно включают в себя элементы контраста.

Леонардо да Винчи был первым, кто описал контраст: «Из цветов равной белизны и равно удаленных от глаза тот будет на вид чистым, который окружен наибольшей темнотою, и, наоборот, та темнота будет казаться более мрачной, которая будет видна на более чистой белизне, каждый цвет лучше распознается на своей противоположности». Контрасты разделяются на два вида: ахроматический (световой) и хроматический (цветовой). В каждом их них различаются контрасты: одновременный, последовательный, пограничный (краевой).

ОДНОВРЕМЕННЫЙ СВЕТОВОЙ КОНТРАСТ. «Чем ночь темнее, тем звезды ярче». Суть явления в том, что светлое пятно на темном фоне кажется еще более светлым – положительный контраст, а темное на светлом – темнее (отрицательный контраст), чем оно есть на самом деле. Если пятно окружено полем другого тона (светлее или темнее), то его называют реагирующим полем, а фон – индуктирующим. Реагирующее поле меняет свою светлоту сильнее, чем индуктирующее поле.

Если светлоты этих полей будут велики, то действие контраста заметно снижается. Явление светового контраста заметны и тогда, когда поля одного цвета, но разной светлоты. Такой контраст называется монохроматическим. В этом случае меняется не только светлота, но и насыщенность. В сущности, с одновременным контрастом мы имеем дело и при сочетании хроматических и ахроматических цветов.

Эксперименты, проведенные Б.Тепловым, показали, что эффект одновременного контраста зависит от абсолютной яркости индуктирующего и реагирующего полей и от разницы яркости этих полей. При очень низких и очень высоких различиях, контраст отсутствует или весьма незначителен.

Он зависит и от величины взаимодействующих полей. Чем меньше световое пятно, тем сильнее оно подвергается высветлению. Установлено также, что при равной яркости большее реагирующее поле всегда кажется темнее маленького индуктирующего. Контраст зависит также от расстояния между полями. Сила контраста убывает по мере увеличения расстояния между полями.

Эффект контраста зависит от формы реагирующего поля: круг или кольцо, квадрат или буква на одном и том же поле при одинаковых условиях будут сопровождаться различной силы контрастом.

Если мы имеем два рядом расположенных пятна, которые не относятся между собой как фигура и фон, то контраст, который они вызывают, образуется по принципу равного взаимодействия. Однако в данном случае контраст имеет тенденцию к исчезновению. Пока эти пятна достаточно велики и мы их рассматриваем одновременно, взаимодействие их остается заметным, при этом мы замечаем и пограничный контраст. Но если эти пятна достаточно малы или воспринимаются с большого расстояния, то возникает их оптическая смесь, и мы видим общий серый тон.

Явление одновременного светового контраста сопровождается не только потемнением или посветлением реагирующего поля, но и кажущимся изменением размеров. Светлое пятно на темном фоне кажется еще светлее и больше, а темное – на светлом как бы уменьшается в размерах и темнеет.

ОДНОВРЕМЕННЫЙ ЦВЕТОВОЙ КОНТРАСТ. Эффект одновременного цветового контраста возникает при взаимодействии двух хроматических цветов или хроматического с ахроматическим. Это более сложное явление, чем световой контраст, т.к. изменения по цветовому тону сопровождаются одновременным изменением по светлоте и насыщенности, причем последние могут быть более заметными, чем сам контраст.

Если требуется определить действие цветового контраста по цветовому тону, то необходимо, чтобы контрастирующие тона были близки по светлоте и насыщенности. Тогда нетрудно заметить, что при сопоставлении различных цветов в них появляются новые качества и дополнительные оттенки.

Существует тенденция цветов в контрасте отдаляться друг от друга. Например, желтый на оранжевом светлее, зеленеет, холоднеет. Оранжевый на желтом краснеет, темнеет, теплеет. Другого рода явления происходят при контрасте взаимодополнительных цветов. При их сопоставлении не возникают новые оттенки, но сами цвета увеличивают свою насыщенность и яркость. При рассмотрении их издалека, срабатывает закон аддитивного смешения, и сопоставляемые цвета тускнеют и, в конце концов, сереют.

ПОГРАНИЧНЫЙ КОНТРАСТ. Возникает на границах двух смежных окрашенных поверхностей. Наиболее четко проявляется, когда рядом две полосы, различные по светлоте или по цвету. При световом контрасте часть светлого участка, который ближе к темному, будет светлее, чем дальняя. Создается эффект неровности (ступеньки) и объема.

При хроматическом контрасте соседние тона меняются так же как и при одновременном контрасте, т.е. желтое пятно около красного зеленеет, но чем дальше от края, тем этот эффект становится слабее. Можно сказать, что одновременный и пограничный контрасты всегда выступают вместе.

Контрастное действие цветов исчезает, если между ними проложить хотя бы очень узкую светлую или темную полоску (она называется просновка), т.е. обязательным условием контраста является расположение цветов рядом.

Итак, при краевом и одновременном контрасте цвет воспринимается более темным, если он окружен более светлыми цветами и светлеет в окружении темных.

К цветовому пятну на цветном фоне как бы примешивается цвет, дополнительный к цвету окружения. Если цвет находится на фоне своего дополнительного цвета, то он воспринимается более насыщенным.

Если на цветной фон положить пятно того же цвета, но меньшей насыщенности, то его насыщенность еще больше уменьшится. Чем более насыщен цветовой фон, тем больше он действует на «соседей». Особенно это заметно при одинаковой или близкой светлоте.

Цвета, находящиеся на концах диаметра спектрального круга, не вызывают при сопоставлении изменения оттенка, зато становятся ярче от этого соседства. Расположенные близко в спектральном круге цвета слабо контрастируют, но приобретают новые оттенки. Все холодные цвета дают больший контраст, чем теплые. Контраст зависит от размеров полей; до определенного предела величина контраста увеличивается пропорционально расстоянию, после которого начинают действовать законы оптического смешения.

Эффективность контраста находится в обратной зависимости от яркости. Сильное освещение уничтожает действие контраста, а слабое освещение усиливает. Однако эффект при восприятии пары остается неизменен при любом освещении. На черном или темно-сером фоне цвета снижают свою насыщенность, а на белом или светло-сером – повышают.

Явление краевого и одновременного контрастов обязывает находить гармонию между соседними цветами, усиливая или уменьшая их контрастное взаимодействие. Например, за счет изменения размера взаимодействующих площадей; удаления или сближения цветных поверхностей; создавая или уничтожая между ними просновку и т.п.

ПОСЛЕДОВАТЕЛЬНЫЙ КОНТРАСТ. Если посмотреть на солнце, а затем перевести взгляд на белую стену, то некоторое время видится темное пятно – это размытое изображение солнца на сетчатке. Последовательный контраст заключается также и в том, что при переводе взгляда с одного красочного пятна на другое, мы наблюдаем на последнем несвойственный ему оттенок. Ученые объясняют это остаточным раздражением сетчатки глаза при восприятии предыдущего цвета, ибо цветовое ощущение имеет длительность и продолжается некоторое время, когда предмет уже исчез. В результате, когда мы переводим взгляд с ярко-красной поверхности на серую или белую, то видим зеленоватый оттенок на светлом, т.е. наблюдается не красный, а дополнительный ему зеленый цвет. Можно с полной уверенностью сказать, что последовательный контраст – это результат цветного утомления глаза от воздействия на него цвета. Это явление называется адаптацией.

Если цветовой раздражитель определенное время действует нам на глаза, то чувствительность к этому цвету начинает понижаться. Причем, цветовое утомление тем больше, чем ярче и насыщеннее цвет. Малонасыщенные цвета не создают последовательного контраста. Явление цветового контраста необходимо учитывать визажистам, особенно при работе над вечерним или подиумным макияжем, а также стилистам и парикмахерам при подборе цвета волос и одежды. Последовательный контраст выражается и в том, что воспроизводится и форма предыдущего цветового пятна.

ЦВЕТ ПОВЕРХНОСТИ. На первый взгляд кажется, что цвет предмета это их неотъемлемое свойство, такое же, как размер, вес, форма. Однако при определенных условиях освещения желтый предмет может казаться оранжевым или зеленоватым, синий – черным или фиолетовым. При отсутствии освещения вообще все предметы будут казаться черными. Но, несмотря на незначительные изменения цвета, мы понимаем, что помидор – красный, а трава – зеленая.

Физической основой, определяющей цвет предмета, служит способность поверхности определенным образом сортировать падающие на нее лучи света, т.е. какие-то лучи поглощать, а какие-то отражать, что и дает цвет поверхности. Но отражение и поглощение еще зависят от многих других стимулов, что делает практически невозможным увидеть цвет в чистом виде.

От спектрального состава отражаемого поверхностью света зависит и кажущаяся яркость. Все голубые, зеленые, фиолетовые тона делают поверхность темнее, а желтые и красные, наоборот, придают ей яркость. Желтое электрическое освещение добавляет красному насыщенности, оранжевый краснеет, желтый теряет свою насыщенность, сереет, а желто-синие становятся почти черными.

Художники-пейзажисты давно подметили, что зеленые листья при вечернем освещении слегка краснеют. Оказывается, листья поглощают не все красные лучи спектра, а лишь их часть, другую отражая. И, в то время, как все зеленые предметы вечером темнеют, листья деревьев приобретают красноватый оттенок.

Поверхностный цвет – это цвет, воспринимаемый в единстве с фактурой предмета. Пространственный цвет - это цвет удаленных от нас предметов, цвет разнообразных сред: неба, облаков, тумана, воды.

Плоскостным называется цвет, принадлежащий какой-либо плоскости, находящейся на таком расстоянии от глаза, что особенности ее структуры глазом не ощущаются, но благодаря сочетанию своей формы и действию контраста она выделяется на каком-то фоне и воспринимается как плоскость. Например, можем видеть разные поверхности одинаково зеленого цвета – трава и фанера на ней лежащая, различить их издали невозможно. На этой неспособности глаза различать фактурные качества на расстоянии, основывается маскировка.

По мере удаления от наблюдателя поверхностный цвет изменяется в зависимости от цвета той прозрачной среды, в которой он находится. Светлота будет понижаться у белого и желтого и повышаться у темных. Кроме того, совокупность цветов в результате оптического смешения будет восприниматься как один результирующий цвет.

ВЫРАЗИТЕЛЬНОСТЬ ЦВЕТА. Наиболее яркое живое описание основных цветов можно встретить у великого Гете, в его трудах, посвященных цвету. Это не просто мнение и впечатление одного человека, это слова поэта, который знал, как выразить то, что видят его глаза. Гете утверждал, что все цвета находятся между полюсами: желтого (наиболее близкого дневному свету) и синего (наибольшего оттенка темноты).

Положительные или активные цвета – желтый, оранжевый, красный – создают активное оживленное настроение. Синий, красно-синий, фиолетовый – отрицательные пассивные цвета – настроение тоскливое, безмятежное, мягкое, спокойное.

Красный, по мнению Гете, эмоциональный, волнующий, стимулирующий цвет. Это цвет королевской власти, он объединяет все цвета. В чисто красном – благородство, он создает впечатление как серьезности и достоинства, так и прелести и грации.

Желтый – спокойный, безмятежный, веселый, очаровывающий. По определению Гете желтый цвет обладает легкостью, производит, безусловно, теплое впечатление и вызывает благодушное настроение. Гете считает, что желтый цвет можно использовать для выражения стыда и презрения. А, по мнению великолепного русского живописца Кандинского, желтый цвет никогда не несет в себе глубокого значения. Желтый способен выразить у него насилие, бред умалишенного, а ярко-желтый – ассоциируется со звуком горна.

Оранжевый у Гете – дает глазам чувство теплоты и наслаждения. Ярко-оранжевый рвется к органам зрения, производит шок. А у Кандинского – олицетворяет силу, энергию, честолюбие, триумф.

Синий – холодный, пустой, но выражающий спокойствие. Гетовский синий всегда приносит что-то темное, синяя поверхность как будто уплывает от нас вдаль. Темно-синий – погружение в глубокое раздумье обо всех вещах, не имеющих конца. Голубой цвет создает спокойствие, а фиолетовый вызывает беспокойство, нетерпенье и даже бессилие.

Зеленый цвет – удачно сбалансированный - показывает устойчивость, свойственную чистым цветам, дает реальное удовлетворение, совершенную тишину и неподвижность.

ГАРМОНИЯ ЦВЕТА. Бог сотворил все мерою и числом – все в мире должно быть гармонично. Термин «гармония» как эстетическая категория возник в Древней Греции. Проблемы гармонии интересовали людей со времени Платона, Аристотеля, Теофраста до сегодняшнего дня. Эта категория теснейшим образом связана с такими понятиями как связанность, единство противоположностей, мера и пропорциональность, равновесие, созвучие, сомасштабность человеку. Кроме того, гармоническое – это обязательно возвышенное и прекрасное.

В общем понятии гармонии возможно выделить такие ее частные подразделения, как гармония звуков, форм, цветов. Термином цветовая гармония часто определяют приятное для глаз, красивое сочетание цветов, предполагающее определенную согласованность их между собой, определенный порядок в них, определенную соразмерность и пропорциональность.

Цветовые пятна на поверхности взаимосвязаны. Каждый отдельный цвет уравновешивает или выявляет другой, а два вместе, влияют на третий. Иногда изменение даже одного цвета в композиции ведет к ее разрушению.

Теория цветовой гармонии не может быть сведена к тому, какой цвет с каким гармонирует, она требует ритмичной организации цветовых пятен. Бессистемное нагромождение цвета создает пестроту.

Попытки построить нормативную теорию цветовой гармонии предпринимались на протяжении всего Х1Х века и позже.

Для создания классической цветовой гармонии необходимо выполнять некоторые правила подбора цветов

    в гармонии должны быть заметны первоначальные элементы многообразия, т.е. присутствовать красный, желтый и синий цвета

    многообразие тонов должно быть достигнуто через разнообразие светлого и темного

    тона должны быть в равновесии, ни один не должен выделяться – это и есть цветовой ритм

    в больших цветовых композициях цвета должны по порядку следовать один за другим так, как в спектре или радуге (мелодия единства)

    чистые краски следует применять экономно из-за их яркости и лишь в тех местах, которую хочется выделить.

Это конечно очень формальный подход к гармонии, но и он имеет право на существование.

Более общие правила при создании цветовой гармонии заключаются в следующем:

    выделение наиболее красивых изолированных цветов и определение условий, в которых эти цвета наиболее выигрышно смотрятся

    выбор некоторой последовательности теплой и холодной гаммы цветов

    сопоставление цветов по контрасту, создание условий в которых каждый цвет кажется красивее сам по себе.

Существенным фактором, определяющим качество цветовой гармонии является соотношение цветовых пятен по занимаемой площади. Существуют определенные пропорциональные соотношения площадей пятен, необходимые для достижения целостности и единства впечатлений при одинаковой насыщенности и светлоте. В случае же контраста по светлоте этот закон приобретает еще большую силу. Так, например, для уравновешивания большого светлого пятна достаточно в несколько раз меньшее по площади, но насыщенное, яркое пятно, контрастное по цвету и светлоте.

Интересным моментом является и цветной фон, на котором можно создать

композицию, например, небольшой гармоничный рисунок может потеряться на неподходящем ему поле. А если этот рисунок увеличить, то он может полезть вперед.

Небезразлично и в какой последовательности будут располагаться цветовые пятна. Неуравновешенность или однообразие в ритме тоже может привести к отрицательному эффекту (пуговицы или украшения на одежде).

Не стоит забывать, что существует взаимодействие между очертаниями пятна, его

формой и цветом. Часто форма подчиняется цвету и наоборот: «острые» цвета сильнее по действию в треугольниках (желтый цвет прекрасно смотрится в геометрических формах). А, склонные к сильному воздействию красный и синий, цвета очень подходят для округлых форм. Если взять ряд квадратов, кругов и треугольников и окрасить их в разные цвета, то можно заметить, как форма и цвет взаимодействуют друг с другом. Круг может приобретать углы и грани, а квадрат наоборот, терять углы и приобретать вогнутость сторон.

ПСИХОЛОГИЧЕСКАЯ ТЕОРИЯ ЦВЕТОВОЙ ГАРМОНИИ

Гете сделал попытку охарактеризовать чувственно-эмоциональное воздействие не только отдельных цветов, но и их разнообразных сочетаний. Основным, определяющим признаком качества цветовой гармонии им была признана целостность цветового впечатления. Согласно Гете, глаз неохотно терпит ощущение одного какого-либо цвета и требует другого, который составил бы с ним целостность цветового круга.

    цвета, стоящие на концах диаметра спектрального круга, всегда воспринимаются как гармоничные

    «характерными» называют сочетания цветов, расположенных на хордах с проскакиванием одного цвета (все характерное возникает только благодаря своему выделению из целого)

    сопоставление цветов на короткой хорде – бесхарактерны, они не могут произвести значительного впечатления

Гете заметил, что впечатление от сочетания цветов может быть различным в зависимости от разности или одинаковости их светлот и от их насыщенности. И еще Гете заметил, что теплые цвета выигрывают при сопоставлении с черным, а холодные – с белым.

ГАРМОНИЯ ВЗАИМОДОПОЛНИТЕЛЬНЫХ ЦВЕТОВ

Это самые гармоничные сочетания. Гармоничность сочетания взаимодополнительных цветов может быть объяснена психофизическими закономерностями зрения, на которые обратил внимание еще Ломоносов и, на основе которых возникла трехкомпонентная теория цветового зрения.

Суть: наш глаз, имеющий три цветообразующих приемника, всегда требует их совместной деятельности – он как бы нуждается в цветовом балансе. А поскольку один из пары взаимодополнительных цветов представляет сумму двух основных, то в каждой паре оказывается наличие всех трех цветов, образующих равновесие. В случае сочетания других цветов, этот баланс отсутствует, и глаз испытывает цветовое «голодание».

Возможно, на этой физиологической основе и возникает определенная неудовлетворенность, отрицательная эмоциональная реакция, величина которой будет зависеть от того, насколько заметно это нарушение баланса.

Для человеческого глаза привычно воспринимать полный комплект цветов, и в повседневной жизни движение глаз регулирует зрительное восприятие таким образом, чтобы видеть как можно больше цветов, так как действие на глаза одного цвета вначале просто неприятно, затем начинает раздражать, а потом, в зависимости от яркости и длительности восприятия, может привести к резко отрицательной реакции и даже психологическому расстройству.

ЦВЕТОВАЯ КОМПОЗИЦИЯ. Композиция цветовых пятен, построенная с учетом всех рассмотренных закономерностей цветовой гармонии, будет ограничена, если не будет служить главному – созданию образа.

Композиционная функция цвета заключена в его способности акцентировать внимание зрителя на наиболее важной детали. Очень существенна для создания цветной композиции, ее способность создавать за счет светлоты, цветового тона и насыщенности свой рисунок.

Цветовая композиция требует соответствующей ритмичной организации цветовых пятен. Бессистемное нагромождение большого числа цветов, даже с учетом их сочетаемости, создает пестроту, раздражает и затрудняет восприятие.

Цветовая композиция – это некое целое, в котором все согласуется и соответствует друг другу, создавая приятное впечатление для глаз.

Понятие гармонии необходимо включает в себя и дисгармонию как свою антитезу.

Если для Античности, Средневековья, Возрождения именно гармония служила идеалом, то уже в эпоху Барокко гармонии стали часто предпочитать диссонанс. В наш век экспрессионизм решительно отвергает принципы классической гармонии и, в поисках большей выразительности, часто обращаются к заведомо или даже нарочито дисгармоничным сочетаниям. Однако это не умаляет значения важности изучения классических принципов, т.к. это ключ к пониманию цвета и цветовых композиций вообще.

КОЛОРИТ. Существенную роль в создании любой композиции играет объединение цветов. Обычно объединяются между собой цвета, равные по светлоте и близкие друг другу по цветовому тону. Когда цвета тонально объединены между собой, то замечаются их качественные изменения, проявляющиеся в особой их звучности. Цвет, выпадающий из общей тональности, не согласованный с нею, кажется чуждым, мешает восприятию образа.

Гармоническое сочетание, взаимосвязь, тональное объединение различных цветов называется колоритом. Колорит раскрывает нам красочное богатство мира.

Термин «колорит» вошел в художественный лексикон в начале 18 века и почти сразу появился и утвердился в русском художественном словаре. Он происходит от латинского слова «соlor» - цвет, краска.

Колорит характеризует некую оптическую совокупность всех цветов, рассматриваемых с некоторого расстояния. Именно в этом смысле принято говорить о теплом, холодном, серебристом, мрачном, скучном, веселом, прозрачном, золотистом и т.п. колорите – особенности цветового строя, предпочтению тем или иным цветам, выражающим образ.

Однако следует отдавать должное и тому факту, что общий цветовой тон, который мы называем колоритом, может возникать совершенно случайно, помимо воли создателя и может быть присущ любому цветовому сочетанию.

Развитие науки о цвете, а также истории и теории искусства в 19 и 20 веках приводит к более глубокому и всестороннему анализу понятия «колорит». Становится понятным, что не всякий работающий с цветом, пусть даже и очень красиво и изящно, является колористом. Колорит – это особая способность художника, в широком смысле этого слова, распоряжаться цветом, настолько загадочная и непонятная, что появились даже высказывания о «тайне» колорита, «магии» колорита, о его непостижимости. А среди художников стала излюбленной поговорка: «Рисунку можно научиться, а колористом нужно родиться».

Колорит теснейшим образом связан с цветом, однако совокупность цветов еще не определяет колорит. Колорит – это система цветов, но система и сумма - не одно и то же. Система закономерна, обладает единством, целостностью и воспринимается как единое целое.

Нет смысла говорить об эмоциональной роли цвета вообще. Один и тот же цвет, будучи цветом различных предметов или объектов воспринимается совершенно по-разному. Цвет в жизни воспринимается не в его колориметрических характеристиках, а в зависимости от окружающих цветов и освещения, причем он всегда подчинен общей тональности.

Дени Дидро приводит пример: «Сравните сцену природы днем при сияющем солнце и при пасмурном небе. Там сильнее свет, цвет и тени, здесь все это бледное и серое. При изменении освещения и окружения неминуемо меняются характеристики цвета. Можно сказать, что свет является общим колоритом данного пейзажа».

Рассмотрим изменение цвета при различном освещении:

    в сумерках или в пасмурный день, когда сила освещенности сравнительно мала, цвета существенно темнеют, теряя насыщенность

    наиболее верное представление о цвете можно составить только при дневном свете без солнца; в комнате днем, по мере удаления от окна, цвета слабеют, сереют, теряя насыщенность

    ночью вообще трудно определить цвет, а утром вначале становятся заметны голубые, синие, зеленые, потом желтые и самыми последними набирают насыщенность красные цвета

    при солнечном свете все цвета хорошо видны; при ярком свете в полдень все цвета высветляются. От солнечного света наиболее страдают холодные цвета: голубой, синий, зеленый – они слегка блекнут, фиолетовый краснеет. Теплые цвета - желтый, оранжевый и красный – меняются меньше

    к вечеру цвета вновь плотнеют и темнеют, последовательно меркнут желтый, оранжевый, зеленый, синий, дольше всех остается виден холодный красно-фиолетовый цвет

    желтое электрическое освещение затемняет все цвета и придает им чуть красноватый оттенок, создавая теплый колорит

    «дневной» электрический свет тоже меняет все цвета, делая их более холодными и темными

Цвет лучей того или иного источника света объединяет цвета, делая их родственными и соподчиненными. Как бы ни были разнообразны краски в жизни, цвет освещения, присутствующий на всех предметах и деталях объединяет их колористически. От освещения меняется не только яркостные характеристики цвета, но и прочие качества, включая фактурные характеристики. Нельзя рассматривать цвет независимо от предметных связей и от освещения. Тональная соподчиненность определяет характер каждого цвета цветовой системы, который не исчерпывается тремя основными характеристиками: светлотой, насыщенностью и цветовым тоном. Сюда необходимо прибавить плотность цвета, его весовые качества, пространственные и другие свойства. В некоторых случаях цвет достигает значения символа.

Цвет приобретает определенную выразительность только, когда вступает в содружество с остальными цветами, т.е. в систему цветов, а это и есть колорит. Совокупность цветов, находящихся в определенных соотношениях друг с другом, наделенных определенным смыслом, образует конкретный, чувственно воспринимаемый строй, способный выразить цель и смысл данной композиции.

Чтобы верно создать образ нужно научиться видеть целостно. Так в руководстве по живописи говорится, что умение видеть и постановка глаза художнику (а мы добавим и имиджмейкеру) нужны, чтобы замечать пластические качества, объемную форму, строение, цвет, светотени, фактурные качества, а также, чтобы находить значительное и красивое и уметь все это показать.

При обычном видении мы рассматриваем только то, на что направлен взгляд. «При широком охвате видимого человек не всматривается, - писал Б.Иогансон, - а видит обобщенно… и, охватывая взглядом одновременно все, вдруг замечает то, что особенно ярко, а что еле заметно. Нужно идти от целого, чтобы получить возможность сравнивать детали, чего лишается человек, идущий от детали».

Константин Коровин: - «Воспитывай глаз сначала понемногу, потом шире распускай глаз, а в конце концов все надо видеть вместе. И тогда то, что не точно было взято, будет фальшивить, как неверная нота в оркестре».

Необходимо научиться отвлекаться от заранее известного, чтобы увидеть те отношения в которых находятся детали в момент наблюдения.

ПСИХОФИЗИЧЕСКОЕ ВОЗДЕЙСТВИЕ ЦВЕТА И ЕГО СИМВОЛИКА

«Цвета есть раздражающие и успокаивающие, кричащие, спорящие друг с

другом и живущие ласково один возле другого. В их борьбе или согласии

и есть воздействие цвета на человека через чувство зрения».

К.Петров-Водкин

Вопросами эмоционального воздействия цвета на человека интересовались многие практики и теоретики искусства – Леонардо да Винчи, И.Гете, Э. Делакруа, М.Дерибере, К.Юон, И.Грабарь и др.

Физиологам давно известно о независящем от настроения субъекта физиологическом влиянии цвета. Заметим, что действие каждого цвета и специфика его внутреннего значения не зависят от отношения человека к нему. Цвет может нравиться или не нравиться, но характер его влияния, специфика его воздействия на психику остаются неизменными, вне зависимости от состояния организма в момент воздействия. Таким образом, символическое значение цвета, его «психологический код» действительно объективны и не зависят от положения того или иного цвета в ряду индивидуального предпочтения.

Каждый цветовой оттенок производит одно и то же действие на любой живой организм, вызывает вполне определенный сдвиг в состоянии всякой биосистемы, будь то мышь или человек.

«В своих самых общих элементарных проявлениях, независимо от строения и форм того материала, на поверхности которого мы его воспринимаем, цвет оказывает известное воздействие на чувство зрения, а через него и на душу, - писал Гете. Цвета действуют на душу: они могут вызывать чувства, пробуждать эмоции и мысли, которые нас успокаивают или волнуют, они печалят или радуют». До сих пор не разрешена загадка цвета – почему и как именно влияет он на настроение и поведение человека. Что позволило Василию Кандинскому назвать живопись «цветовым инструментом состояния души»? Почему человек столь чутко откликается на всевозможные цветовые коды окружения?

Известный психиатр В.М.Бехтерев утверждал: «Умело подобранная гамма цветов способна благотворнее действовать на нервную систему, чем иные микстуры». Аристотель писал: «Все живое стремится к цвету… Цвета по приятности их соответствий могут относиться между собой подобно музыкальным созвучиям и быть взаимно пропорциональными». Ивли Грант заметил: «Чем больше смотришь на этот мир, тем больше убеждаешься в том, что цвет был создан для красоты, и красота эта – не удовлетворение прихоти человека, а необходимость для него».

Действительно, цвет способен возбуждать и подавлять, возносить и низвергать, лечить и облагораживать. Приведем несколько выдержек из замечательной книги Мориса Дерибере «Цвет в деятельности человека»:

«Физиологическое и психофизическое воздействие цвета на живые существа позволило разработать богатую технику цветотерапии… Особое внимание привлекал красный цвет, который использовали еще средневековые врачи для лечения ветряной оспы, скарлатины, кори и некоторых других кожных заболеваний. Изучались и другие цветовые лучи. Лечение невралгических явлений светом началось очень давно. Вначале оно было эмпирическим, но после наблюдений Плезантона над болеутоляющим свойством света, пропущенного через голубой фильтр, и наблюдений Поэга над тем же свойством фиолетового цвета, оно стало более точным. В начале нашего века несколько русских и немецких терапевтов подтвердили наблюдения о благоприятном воздействии голубых и фиолетовых лучей при лечении невралгических заболеваний…»

Зеленый цвет был использован Пото при лечении нервных заболеваний и психопатических расстройств. Он считал, что зеленый цвет действует в тех случаях, когда нужно дисциплинировать ум и тело и вынудить больного контролировать свои поступки.

Возможности цветовоздействия попросту фантастичны. Прямое облучение светом, использование лазерных устройств, создание однотонных интерьеров, применение пропускаемых через самоцветы светотоков, направленное влияние на точки акупунктуры, целевое воздействие на активные зоны радужки глаза – сегодня существует множество методов введения цветоэнергий в информационно-энергетический метаболизм человека. Причем все эти приемы эффективны вне зависимости от степени осознания человеком характера и направленности цветоэнергетического воздействия. Цвет, как и звук, является естественным интегратором физиологических и психических процессов

О влиянии цвета на психику человека и его использовании в медицине пишет М.Дерибере по результатам исследования доктора Подольского: « Зеленый цвет влияет на нервную систему. Это болеутоляющий, гипнотизирующий цвет. Эффективен при нервной раздражительности, бессоннице и усталости, понижает кровяное давление поднимает тонус, создает ощущение тепла, расширяя капиллярные сосуды. Облегчает невралгии и мигрени, связанные с повышенным кровяным давлением. Зеленый успокаивает, и его употребление не дает никаких вредных последствий

Голубой цвет – антисептический. Он уменьшает нагноения, может быть полезен при некоторых ревматических болях, при воспалениях и даже при лечении рака. Чувствительного человека голубой облегчает больше, чем зеленый. Однако от слишком долгого облучения голубым цветом возникает некоторая усталость или угнетенность.

Оранжевый цвет стимулирует чувства и слегка ускоряет пульсацию крови. Не влияет на кровяное давление, создает чувство благополучия и веселья, Имеет сильное стимулирующее действие, но может утомить.

Желтый цвет стимулирует мозг. Может быть эффективен в случае умственной недостаточности. Долгое облучение препятствует колебаниям в течении болезни.

Красный цвет – теплый и раздражающий. Он стимулирует мозг, эффективен для меланхоликов.

Фиолетовый действует на сердце, легкие и кровеносные сосуды, увеличивает выносливость ткани. Аметистовый цвет имеет стимулирующее действие красного и тоническое действие голубого.

В течение длительного времени исторического развития в сознании людей закрепились определенные ассоциативные связи различных цветов или цветовых сочетаний с различными жизненными ситуациями и явлениями. В отдельные периоды истории изобразительного искусства символике цвета принадлежала важная роль, например, в средние века.

Белый цвет олицетворял чистоту и непорочность, красный – кровь святого, зеленый – надежду на бессмертие души, голубой цвет символизировал печаль.

Известно символическое значение каждого цвета в русской иконописи, обусловленное различными художественными течениями, как местными, так и привезенными из Византии и от южных славян.

В русской иконописи цвет золота символизировал идеи библейского рая, был символом истины и славы, непорочности и нетленности, олицетворял идею очищения души. Красный цвет в иконописи символизировал прежде всего кровь Иисуса Христа, был символом пламенности, огня, жизни. Пурпурный цвет в искусстве Византии олицетворял идею императорской власти. Голубой – идеи созерцательности, цвет неба и горного мира. Зеленый – идеи надежды, обновления, юности. Часто применялся и применяется для обозначения райского сада. Белый в русской иконописи символизировал причастность к божественному свету.

Известно символическое значение цвета и в народном творчестве, которое складывалось под воздействием окружающей природы. У многих народов красный – символ солнца и любви, зеленый – надежды, белый – чистоты и невинности.

Вывод напрашивается сам собой: можно управлять живой системой и психическими процессами самым естественным образом, влияя наиболее привычным путем, достигая значительных результатов правильным подбором цветов и формы одежды, причесок, макияжа, интерьера, создавая вокруг себя благоприятную гармоничную цветовую обстановку, без использования синтетических лекарств и сложных физиотерапевтических воздействий.

Терминология

Чтобы не запутаться, необходимо ввести ряд понятий, характеризующих цвет. Во-первых, необходимо различать такие понятия, как окраска и цвет предмета. Окраска - это способность предмета отражать излучения с теми или иными длинами волн, а цвет - это результат реализации этой способности в определенных условиях освещения. Так, к примеру, окраска снега - белая, но в зависимости от освещения он может иметь голубоватый, синеватый или желтоватый цвет. Естественно, что цвет для "прикладных нужд" гораздо важнее: представьте себе, что вы добились идеальной цветопередачи на оттиске. Но при освещении его ксеноновой лампой. А заказчик рассматривает его в свете ночника с розовым абажуром... Идиллия, не правда ли?

Во-вторых, необходимо различать светлоту и цветность . Светлота является количественной характеристикой цвета, и именно она позволяет нам понять, что Солнце, в общем-то, поярче лампочки Ильича будет... Цветность же - характеристика качественная, позволяющая определить собственно цвет. Какое-то "масло масляное" прямо получается! Для того чтобы сравнивать два цвета по цветности (вот опять! что за терминология!), было бы неплохо лишить их яркости вовсе. Практически это невозможно, но теоретически - вполне даже, и, к примеру, цветовая система Lab построена таким образом, что нереальные (придуманные оч-ч-чень умными учеными!) цвета a и b как раз и обладают нулевой яркостью, а канал L не несет никакой цветовой информации. Такая вот, извините, абстракция.

Цвета делятся на две категории: ахроматические и хроматические. Ахроматические цвета - белый, серый, черный - отличаются только светлотой, то есть количественным показателем. Они не отличаются друг от друга качественно и раздражают все группы рецепторов одинаково.

Что такое свет

Для того чтобы понять, что такое цвет, сначала мы должны уяснить, что такое свет. Как известно, физики говорят о том, что свет есть одновременно частица и волна. Мы не будем углубляться в дебри споров о физике света, и теорию я постараюсь изложить как можно проще. Тем, у кого появится желание детально разобраться в этом вопросе, я могу посоветовать курс общей физики.

Хроматические цвета определяются и светлотой, и цветностью. Цветность, в свою очередь, обладает двумя характеристиками: насыщенностью и цветовым тоном. Цветовой тон определяет сущность цвета (красный/синий/желтый), а насыщенность позволяет оценить, насколько "глубоким" и "чистым" является данный цвет, то есть насколько он отличается от ахроматического. Этот принцип определения цвета заложен с небольшими вариациями в таких моделях описания цвета, как HSB и HSL.

Для того чтобы определить понятие цвета, нам вполне достаточно волновой теории. Итак, свет есть излучение с определенной длиной волны. Спектр видимого света - это излучение с длинами волн в диапазоне примерно от 400 до 700 нанометров. Все излучения, лежащие за пределами этого диапазона, человеческим глазом уже не воспринимаются . В пределах видимого спектра излучения с разной длиной волны интерпретируются человеческим глазом как цвета (рис. 1). Таким образом, зная спектральный состав света, воспринятого глазом, можно легко определить цвет предмета. Однако обратный процесс с той же легкостью проделать не получается: зная цвет, можно предложить несколько вариантов его спектрального состава. Так, если излучение занимает интервал 570-580 нм, то цвет его однозначно желтый. Но желтым цветом может оказаться и смесь двух монохромных излучений: зеленого и красного, смешанных в определенной пропорции (почему - станет ясно дальше). Если спектральный состав двух цветов одинаков, цвета называются изомерными. Если же излучения одного цвета имеют разный спектральный состав, такие цвета называются метамерными. Именно на этой особенности человеческого зрения построены все системы синтеза цветов. Например, в телевизоре за счет модуляции мощности трех световых пучков - красного, зеленого и синего - получают все промежуточные цвета.

Рис. 1

Излученный и отраженный свет

Все, что окружает нас и попадает в поле нашего зрения, либо излучает свет, либо его отражает (или пропускает, в случае прозрачных предметов). Если спектр излучаемой телом энергии совпадает (или перекрывается) со спектром видимого излучения, человек воспринимает его как светящийся предмет. Цвет этого тела зависит от спектрального состава излучения. Так, если в спектральном составе излучения преобладают волны от 600 до 700 нм (красная часть спектра), мы будем воспринимать его как красное светящееся тело - например, кусок раскаленного металла. Если в излученном свете присутствуют волны красной и зеленой части спектра, глазу этот свет будет казаться желтым. Если же тело излучает во всем видимом спектре, глаз воспримет его как белый светящийся предмет. Еще один пример - ваш монитор: точки люминофора, которыми покрыт экран, излучают свет под воздействием электронного луча.

Отраженный свет возникает, когда некоторая поверхность отражает световые волны, падающие на нее от источника света. Идеально белая поверхность отражает все падающие лучи, ничего не поглощая (рис. 2, а). Серая поверхность равномерно поглощает световые волны разной длины. Отраженный от нее свет не меняет свой спектральный состав , изменяется только интенсивность излучения (рис. 2, б). Черные поверхности, существующие в природе, практически полностью поглощают падающий на них свет (рис. 2, в). Идеальная черная поверхность не отражает свет вообще. Подобные поверхности, отражающие и поглощающие различные цветовые лучи в равной мере, называются ахроматическими (по-русски - бесцветными).

Все остальные поверхности по-разному отражают свет с разной длиной волны. Так, красные поверхности поглощают световые волны, лежащие в зеленой и синей областях спектра, отражая только волны красной области. Именно поэтому при освещении красного предмета зеленым или синим светом он выглядит почти черным. Если же мы осветим красный предмет красным светом, он, наоборот, резко выделится на фоне остальных окружающих его предметов другого цвета. На принципе избирательного поглощения построены все технологии получения цвета в производстве. Рассмотрим это на примере типографского процесса: полиграфическая краска, нанесенная на бумагу, пропускает падающее излучение, поглощая определенную часть спектра; затем свет отражается от бумаги и еще раз проходит сквозь слой краски. В результате этого спектральный состав света, отраженного от запечатанной поверхности, изменяется, и мы видим цвет.

Как человек воспринимает цвет?

Человеческий глаз содержит два вида светочувствительных рецепторов: палочки и колбочки (ну-ну, только не надо начинать зевать и откладывать статью в сторону: это необходимая вводная информация, без которой будет нелегко разобраться в более интересных и нужных вещах). Палочки обеспечивают черно-белое зрение и обладают очень высокой чувствительностью. Колбочки же позволяют человеку различать цвета, но их чувствительность гораздо ниже. В темноте работают только палочки - именно поэтому ночью "все кошки серы". Для палочек излучения с разной длиной волны отличаются только яркостью, поэтому при низкой освещенности мы, не различая самих цветов, можем все же определить, что зеленое яблоко светлее красного. В сумерках палочки и колбочки работают совместно, а при повышении уровня освещенности палочки понемногу отключаются. Если вам доводилось встречать рассвет где-то на природе, вы наверняка отметили, что поначалу серый окружающий мир понемногу проявляется, раскрашиваясь в яркие цвета после восхода солнца.

Существует три типа колбочек, чувствительных к свету с разной длиной волны. Упрощенно можно сказать, что первый тип воспринимает световые волны с длиной от 400 до 500 нм (условно "синюю" составляющую цвета), второй - от 500 до 600 нм (условно "зеленую" составляющую) и третий - от 600 до 700 нм (условно "красную" составляющую). В зависимости от того, световые волны какой длины и интенсивности присутствуют в спектре света, те или иные группы колбочек возбуждаются сильнее или слабее. Рецепторы передают сигналы мозгу, а мозг интерпретирует эти сигналы как видение цвета. Исходя из этой особенности строения человеческого глаза можно сделать вывод, что цвет трехмерен по самой природе цветового ощущения.

Чувствительность глаза к попавшему излучению может быть оценена по целому ряду параметров. Во-первых, можно оценить яркостную чувствительность глаза. При оценке цвета по яркости, а следовательно, и по светлоте, необходимо помнить, что вклад в ощущение светлоты вносят как палочки, так и колбочки. При этом мощность излучений разного цвета, вызывающих одинаковое световое ощущение, изменяется в широких пределах.

Рис. 3

На рис. 3 показана кривая спектральной чувствительности глаза среднего человека, называемая также кривой относительной световой эффективности. Глаз наиболее чувствителен к зеленым лучам, наименее - к синим. Эта кривая не что иное, как КПД человеческого глаза. По ней легко определить, какая часть попавшего в глаз света "полезно используется" для создания светового ощущения. Как вы видите, для того чтобы синий цвет казался человеку таким же ярким, как желтый или зеленый, его реальная энергия должна быть в несколько раз выше. Экспериментально установлено, что среди излучений равной мощности наибольшее световое ощущение вызывает монохроматическое желто-зеленое излучение с длиной волны 555 нм. Относительная спектральная световая эффективность (обозначаемая буквой v ) этого излучения принята за единицу. При этом, как вы видите из рисунка, спектральная чувствительность зависит от внешней освещенности. В сумерках максимум спектральной световой эффективности сдвигается в сторону синих излучений, что вызвано разной спектральной чувствительностью палочек и колбочек. Именно этим объясняется пример из введения в тему: на рис. 4 указаны примерные значения v для красного и синего квадратов на свету и в темноте. Как видите, в темноте синий цвет оказывает большее влияние, чем красный, при равной мощности излучения, а на свету - наоборот.

Рис. 4

Кстати, если у вас не получилось добиться подобного результата, то вы, скорее всего, рассматривали данную картинку при свете лампы накаливания, в спектре которой синяя составляющая весьма и весьма мала... Попробуйте повторить эксперимент на улице или при лампах дневного света. Ну как, получилось? Вот вам и повод задуматься о возможности цветокалибровки: в зависимости от спектра источника освещения вы увидите совершенно разные цветовые гаммы.

Физиологические нюансы

Самой замечательной особенностью человеческого организма является то, что мы, люди то есть, не можем определять величины каких бы то ни было раздражителей в абсолютном виде. Мы не в состоянии выйти на улицу и сказать: "сейчас 19,863 o С", или, взглянув на яблоко, точно разложить его цвет в полиграфическую триаду . Для этого нами были придуманы приборы, регистрирующие абсолютные значения. Человек же в состоянии определять только относительные изменения, опираясь либо на непосредственные сравнения двух разных величин, либо на сравнение величины с неким отложившимся в памяти значением. В первом случае можно добиться весьма впечатляющих результатов, во втором - только очень приблизительных.

В области цветового восприятия это приводит к тому, что мы можем различать два цвета по яркости или цветовому тону только в случае, если разница между ними превышает некоторое пороговое значение. На этом основана система измерений, связанная с отсчетом количества порогов от эталона. Число порогов различения по цветовому тону, яркости и насыщенности, естественно, ограничено. Поэтому число цветов, различаемых глазом, тоже конечно. В результате исследований определено, что глаз человека в состоянии различать до 100 тысяч цветов. При этом число различаемых цветов несветящихся тел гораздо меньше, что позволяет создавать систему оценки цвета, основанную не на измерении параметров, а на сравнении с образцом из каталога эталонов цвета. Именно такой оценкой занимается любой дизайнер, подбирающий цвет по книжке Pantone .

В подтверждение пословицы "на вкус и цвет товарищей нет", не существует двух людей, одинаково воспринимающих один и тот же цвет. Это связано с тем, что число рецепторов, отвечающих за восприятие определенных длин волн, у каждого человека индивидуально. Восприятие цветов изменяется с возрастом, зависит от остроты зрения, от национальности человека, даже от цвета его волос и от того, что он ел (это не шутка: после еды повышается чувствительность глаза к коротковолновой - синей - части спектра). Правда, подобные различия относятся в основном к тонким оттенкам цвета, поэтому с некоторым допущением можно сказать, что большинство людей воспринимает основные цвета одинаково (за исключением, разумеется, дальтоников).

Психологические нюансы

Человеческое зрение представляет собой совершенно уникальный механизм. Одной из его особенностей является постоянно меняющаяся чувствительность, причем изменяется она по всем параметрам. Глаз постоянно приспосабливается к окружающим условиям, и подобная адаптация приводит к весьма интересным результатам. Рассмотрим только некоторые ее аспекты.

Во-первых, адаптация яркостная. В сумерках мы начинаем автоматически перестраивать чувствительность глаза так, чтобы воспринимать максимальный динамический диапазон. Иными словами, происходит подстройка черной и белой точки глаза, изменяется кривая передачи полутонов. Именно по этой причине многие начинающие фотолюбители так расстраиваются, получив из печати абсолютно "плоскую", неконтрастную фотографию. А беда в том, что камера-то адаптироваться не может...

Во-вторых, цветовая адаптация. Ее суть в том, что под влиянием предшествующих условий освещения цветовое восприятие смещается. Это известно любому, кто хоть раз занимался печатью фотографий. Если человек долго находится в комнате с насыщенным красным светом, то, выйдя из нее в помещение с нормальным освещением, на время адаптации окружающие предметы приобретут зеленоватый оттенок, что будет особенно заметно на белых участках. Это связано с тем, что при раздражении определенной группы колбочек в них распадается светочувствительный пигмент, в результате чего мы и видим цвет. Потом этот пигмент, естественно, регенерирует, но происходит это не мгновенно. Поэтому, если одна из групп рецепторов (в нашем примере - красночувствительная) работала особо интенсивно, то при рассматривании белого поля в данном месте сетчатки будут работать преимущественно зелено- и синечувствительные колбочки. Это предельный вариант цветовой адаптации; существуют и гораздо менее заметные, но куда более важные результаты этого процесса.

Видели ли вы когда-нибудь любительскую видеозапись, сделанную в квартире? Обращали внимание на неестественный красно-желтый оттенок? Это происходит потому, что камера честно регистрирует то, что есть на самом деле . А человеческий глаз интеллектуально убирает любую постоянную примесь цвета, компенсируясь к условиям освещения. Так, лампы накаливания имеют желтый оттенок; зимний дневной свет - синий, но интенсивность этих оттенков гасится глазом по вышеуказанной схеме. Здесь срабатывают как физиологические, так и психологические механизмы. Дело в том, что в нашей памяти заложены характеристики так называемых "известных цветов": бумаги, кожи человека, листвы и так далее. И мозг компенсирует цветовую вуаль, пересчитывая значения всех цветов, используя "известные" в качестве эталона. При этом в основном идет ориентация на нейтральные, ахроматические предметы. Так, если лист бумаги при комнатном освещении имеет желтый цвет, но мы точно знаем, что бумага белая , то мозг автоматически вычтет нужную долю желтизны для получения правильного восприятия. Компенсация эта не стопроцентна - мы все же видим бумагу желтоватой, - но весьма велика (сравните с тем, что вы увидите при просмотре любительской видеопленки). Естественно, если глаз убирает из спектра желтую примесь, это отражается и на цвете остальных объектов. Поэтому условия освещения играют такую важную роль в точной работе с цветом.

Из вышеизложенного можно сделать интересный вывод: если вы садитесь за свой не очень калиброванный монитор, цвета которого, к примеру, имеют голубоватый оттенок, через пятнадцать минут работы вы этот оттенок воспринимать уже не будете, если, конечно, не начнете сравнивать изображение на экране с чем-нибудь еще. Если у вас есть такая возможность - попробуйте переключить цветовую температуру монитора. Сначала изменение будет очень резким, но поработайте около десяти минут - и все вернется на круги своя...

И еще одно дополнение: именно на передачу "известных" или "памятных" цветов нужно обращать особое внимание при работе. Мы можем поверить в то, что кусты на заднем плане фотографии имеют зелено-коричневый оттенок, - бывает и такое, - но вот если на переднем плане мы увидим ярко-красное лицо, сразу отметим неправильную цветопередачу .

В последующих номерах все эти методы и приемы будут разобраны по винтикам и разложены по полочкам, а пока, я думаю, вы и сами сумеете найти немало достойных областей применения изложенной здесь информации.

Еще ряд особенностей восприятия цвета связан с эффектами зрительного контраста.

Рис. 5

Одновременный контраст связан со зрительной индукцией, суть которой в том, что свет вызывает раздражение не только того участка сетчатки, на который падает, но и соседних, изменяя их реакцию в ту или иную сторону. Действие одновременного светового контраста проявляется в том, что объект на светлом фоне кажется темнее того же объекта на темном фоне (рис. 5). Еще один пример на рис. 6 показывает, как на пересечении белых линий, разделяющих черное поле, возникают серые пятна.

Рис. 6

Одновременный цветовой контраст приводит к тому, что цвет объекта, помещенного на цветной фон, смещается в сторону наибольшего отличия от цвета фона. Так, серый квадрат на красном фоне приобретает зеленоватый оттенок, а на синем - желтоватый. Желтый квадрат на красном фоне зеленеет, а на зеленом - приобретает оранжевый оттенок (рис. 7). В общем случае цвет объекта смещается в сторону наибольшего отличия от цвета фона.

Рис. 7

Последовательный контраст возникает в результате резкой смены зрительного образа и связан с инерционностью глаза. Последовательный образ от первого излучения складывается с ощущением от второго. Если вы рассматриваете яркий объект, после чего переводите взгляд на однородное цветовое поле, на нем возникнет сначала более светлый (положительный) образ, затем - менее светлый отрицательный. Посмотрите пример на рис. 8. Если долго смотреть на красный квадрат, а потом перевести взгляд на белое поле, возникнет зеленое фантомное изображение предмета . В общем случае видимый фантомный цвет является приблизительно дополнительным к рассматриваемому.

Рис. 8

И, наконец, еще один из видов контраста - краевой, называемый также явлением Маха . Взгляните на рис. 9. На стыке двух полей разной яркости приграничная часть темного поля становится еще темнее, а светлого, наоборот, светлее. Если вы закроете любое поле листом бумаги, впечатление неравномерности исчезнет. На использовании этого явления построен принцип "Нерезкого маскирования" или Unsharp Mask. Любой фильтр Unsharp Mask усиливает контрастность краевых участков изображения, создавая ощущение повышения резкости.

Рис. 9

Что же в результате? Получается весьма парадоксальный вывод: особенности человеческого зрения и восприятия цвета, индивидуальные для каждого человека, помогают нам жить. Но они же вызывают множество проблем в процессе воспроизведения этого самого цвета, причем связано это как с несовершенством технологий, так и с субъективностью восприятия. Как со всем этим жить дизайнеру - это вопрос для отдельной рубрики, краеугольный камень в которую и закладывает эта тема номера.

От теории - к практике

Как я уже отметил во вступительной статье, эта тема номера является в своем роде прелюдией, введением для новой (надеюсь - большой и интересной) рубрики, в которой будут рассматриваться вопросы, связанные с цветом, компьютерной графикой и компьютерными искусствами в целом. Поначалу может показаться, что публикуемые материалы вообще непонятно как попали в такой журнал, как "Компьютерра", поскольку не имеют ничего общего с "интеллектуальными числодробилками". Отнюдь. На небольшом примере я покажу, как можно использовать теоретические особенности психофизиологического восприятия цвета с целью добиться на удивление практических результатов.

Человеческий глаз имеет весьма незначительный телесный угол - примерно 2 o , - в котором мы воспринимаем предметы с наивысшим разрешением. Однако из-за постоянных мелких движений глаза с непрерывной перефокусировкой создается ощущение большого поля восприятия четкого изображения. Для того чтобы внимательно рассмотреть что-либо, мы направляем взгляд так, чтобы интересующий нас предмет попал именно в зону максимального разрешения глаза. Используя только эту особенность зрения, вы уже можете добиться выдающихся результатов в ретуши.

Представьте себе, что у вас есть очень важная для вас фотография: мутная, расплывчатая, выгоревшая и не в фокусе. Пусть на переднем плане находится человек, которого вам необходимо выделить из окружающего фона. Вы перепробовали все, что можно: и нерезкое маскирование, и контрастные подстройки, и даже - о ужас! - четырехчасовую ретушь вручную тоненькой кистью (на компьютере или руками - это уж кому как нравится), но все же не удовлетворены результатом. Попытайтесь действовать методом "от противного", размыв фон инструментом Blur (я обычно пользуюсь для этого очень широкой и мягкой Photoshop"ной кистью с небольшим значением Opacity [Наложение]). Этим вы обманете глаз за счет особенностей порогового восприятия, описанных в данной теме, и человеку, рассматривающему фотографию, будет казаться, что объект стал гораздо резче.

Второй метод обмана зрения, направленного на повышение резкости изображения, основан на добавлении в изображение... шума!!! Да-да, при легком "замусоривании" картинки, особенно по черному каналу, начинает казаться, что в ней больше деталей - просто глазу есть на чем споткнуться.

Третий пример: замечали ли вы, что черно-белые фотографии заметно проигрывают по ощущению тем же самым изображениям, но тонированным? Секрет прост: добавляя в изображения тон (предположим, делая в Photoshop"е сепию из старой фотографии), вы добавляете работы колбочкам, "отбивая кусок хлеба" у гораздо более чувствительных палочек. Колбочки же обладают более низкой восприимчивостью, в результате картинка - опять же - становится необъяснимо приятнее и, похоже, четче!

Все вышеперечисленные методы плюс несколько особо секретных приемов, были использованы мной в работе над безобразной по качеству, но очень редкой и важной для одного нашего читателя фотографией Порфирия Иванова (www.health.ru/detka ). Оригинал и исправленную версию вы видите на картинках а и б соответственно. Я немного отступил от принципов фотореализма, нарастив пару лишних деревьев в правой части фотографии с целью подчеркнуть фигуру, отделив ее от схожего по тону неба. В данном случае я считаю возможным использовать такие мелкие улучшения действительности, поскольку общий смысл сюжета от этого не меняется.

Unsharp Mask (USM) изнутри

Ну конечно же, все слышали об этом чудесном фильтре! Новичков он обычно вводит в заблуждение своим названием, после чего остается пылиться где-то на задворках папки "Plug-ins". Действительно, немного парадоксально, что фильтр, прямое назначение которого - повышать резкость изображения, называется "нерезким маскированием". Однако название это пришло в компьютерный мир из фотографии, где этот прием известен еще с начала века. Давайте посмотрим, откуда же взялся этот термин и что за ним кроется?

Нерезкое маскирование использует принцип краевого контраста (явление Маха). Идея метода такова: если глаз на стыке двух объектов высветляет светлый и затеняет темный участки, почему бы не сымитировать этот процесс и не повысить за счет этого резкость изображения? Сказано - сделано. Фотографы для этих целей специально делали второй, расфокусированный негатив (откуда и название метода), после чего методом последовательных наложений и экспозиций усиливали краевой контраст (я думаю, вы догадаетесь, как именно, дочитав до конца).

В компьютере у нас, естественно, нет второго негатива. Но мы легко можем размыть копию исходного изображения, получив дубликат "не в фокусе". После этого программа накладывает одно изображение на другое и начинает искать участки, где значения цвета пикселов в исходном и размытом изображении отличаются. Понятно, что наибольшие отличия будут в тех районах, где оригинал имеет граничные переходы (вполне логично, что на участках постоянного тона никакой разницы между оригиналом и копией не обнаружится, - как плашку ни размывай, она плашкой и останется). Найдя подобные участки, фильтр сравнивает оригинал и размытую копию, определяя светлую и темную части перехода, после чего в пределах найденной области соответственно изменяет значения цвета, добавляя краевой контраст.

Фильтр имеет три регулятора (я рассматриваю на примере USM программы Photoshop).

Первый - Amount - указывает, как сильно затемняются/высветляются соответствующие участки, и измеряется в процентах. Значение 100% означает, что обнаруженная разница на пограничных участках изображения усилится в 2 раза. Так, если фон залит 30% черного, а объект - 40% черного, то после применения USM с Amount=100% на стыке объект-фон разница увеличится с 10 до 20%. Цвета фона и объекта в области действия фильтра соответственно изменятся до 25% и 45%.

Второй - Radius - определяет радиус размывки копии изображения (как в фильтре Gaussian Blur), то есть размер зоны перехода, которая будет усилена, и измеряется в пикселах.

Третий - Threshold - позволяет выбрать минимальное значение уровня разницы между копией и оригиналом, от которого начинается применение фильтра. Этот регулятор позволяет избежать применения USM там, где изменение тона незначительно. С его помощью вы можете, допустим, усилить краевой контраст в зашумленном изображении, не увеличивая при этом контрастности шума.

Типовыми начальными значениями для этого фильтра являются 70-100, 1, 5-7.

Для большей наглядности я сымитировал фильтр USM обычными средствами Photoshop"а. На рисунке а показан оригинал. Я трижды дублирую слой оригинала и размываю верхнюю копию фильтром Gaussian Blur, Radius=20 (б ). Как видите, в тех местах, где необходимо затенение, копия светлее оригинала, и наоборот (в ). После этого я инвертирую размытую копию и дублирую этот слой еще раз (он пригодится нам позже). Сейчас в изображении есть пять слоев: оригинал и две его копии (назовем их Orig, Orig1 и Orig2), а над ними - два размытых инвертированных слоя (назовем их Mask1 и Mask2). Включив отображение только Orig1 и Mask1, устанавливаю для Mask1 режим наложения Color Dodge (все операции проводятся только с использованием средств палитры "Layers"), после чего совмещаю (Merge Visible) два этих слоя в один - Mask3, получив маску для затенения. Отключаю отображение Mask3 и включаю слои Orig2 и Mask2. Устанавливаю для Mask2 режим наложения Color Burn и совмещаю слои Orig2 и Mask2 в Mask4, получая маску для высветления. Теперь включаю все три оставшихся слоя, для Mask3 (затемняющей) устанавливаю режим Multiply, а для Mask4 (высветляющей) - Screen. Полученное в результате изображение (г ) вы можете сравнить с результатом действия фильтра USM (д ) со значениями 100, 20, 0.

Точнее говоря, воспринимается немного больший диапазон - от 380 до 760 нм, но действие, оказываемое светом за пределами диапазона 400-700 нм, пренебрежимо мало.

Спектральный состав - это распределение энергии излучения по разным длинам волн. Та длина волны, на которую приходится максимум излучения, называется доминирующей. Именно спектральный состав света определяет, какой цвет увидит человек.

На эту тему есть хороший анекдот: профессиональный полиграфист-цветокорректор выбрался в выходные на пикник за город. Лежит на травке, - рядом шашлычок жарится, ручеек журчит, - смотрит в небо и думает: "Хорошо-то как... Cyan 60%... Magenta 10%..."

Что, кстати, вовсе не гарантирует попадания... Грустно.

Если это, конечно, не фотография отпетого алкоголика...

В данном случае выбран красный цвет потому, что красные объекты вызывают наиболее "долгоживущие" фантомы.

Не "Явлением Маха народу", а просто явлением Маха. Мах - это ученый такой.

Большинство живых существ сориентированы на зрительное восприятие или формы, или цвета. Человек же имеет относительно уравновешенную систему «цвет - форма» при ярко выраженной восприимчивости к цветам.

Топология цвета

Вокруг восприятия цвета в психологии велись споры в течение нескольких веков. В XIX веке И. Гете спорил с И. Ньютоном, в XIX Г. Гельмгольц отрицал идеи Э. Геринга.

Сегодня также существуют противоположные воззрения. Хотя в целом все признали, что в восприятии цвета доминантную роль играют физические, физиологические и психологические особенности, а не фактические проявления цветов.

С точки зрения физики цвета (см. рис) - это волны различной длины спектра видимого света (от 380 до 780 нм). Порядок следования цветов обычно представляется в круговой форме (т.н. цветовой круг).

Цветовой круг

Такое масштабирование с одинаковыми расстояниями образует систему цветов Оствальда (для США - атлас Мансела). Эти топологии (учение о месте) цветов важны также для психологии. Благодаря подобию в начале и в конце спектральной полосы соединяются в хроматический круг (для этого добавлен условный пурпурный цвет, который связывает крайние спектральные цвета).

В человеческой физиологии за восприятие цветов отвечают специальные световые рецепторы - колбочки сетчатки глаза (в то время как палочки отвечают за черно-белое зрение). Визуальная обработка происходит в нейронах сетчатки. Три типа колбочек неравномерно распределены и имеют разные степени восприятия различных диапазонов видимого спектра. Для волн большей длины доминируют желто-зеленые и желто-красные рецепторы, на волнах меньшей длины - синие. Соединенные с сетчаткой нервные клетки сокращают (без потери информации) 3-канальную систему до 2-канальной (ради повышения скорости обработки).

Эти два канала кибернетически дают четыре свойства цветов: красно-зеленый на одном канале, желто-синий на другом (с этим связан феномен контрастных цветов). Оба канала взаимодействуют. Красно-зеленый канал воспринимает волны длиной до 655 нм, сине-желтый - до 575 нм.

Наряду с недостатками большим преимуществом такой системы является то, что мы можем комбинировать смешанный свет в 128 оттенков цвета.

В мире существуют тетрахроматы - люди с четвертым типом колбочек, которые различают смесь красного и зеленого. Благодаря этому они способны видеть излучения, выходящие за пределы воспринимаемого человеческим глазом спектра и различают оттенки, которые обычный человек видит как идентичные. Например, пурпурный оттенок, который отсутствует в стандартном физическом спектре.

Влияние цветов

Физика и физиология дают фундамент для психологии восприятия цветов. В нее входят семь основных характеристик.

Психологическое ощущение цвета зависит от физиологических, культурных, социальных факторов. Оно базируется на «первичных цветах» (теория Геринга) - синем, зеленом, желтом, красном - которые действуют в противоположных парах, одновременно дополняя и исключая друг друга.

Однако, как видим на примере цветного телевидения, технически достаточно (в связи со структурой сетчатки) трех основных цветов (красного, зеленого и синего), чтобы передавать другие цвета. Для каждого цвета большая часть спектра (вплоть до половины) имеет один или несколько центров.


Цвет и восприятие глубины: красный дом визуально кажется на первом плане

Ощущение цвета также зависит от индивидуального опыта. Например, синее авто при различных вариантах освещения может существенно изменять оттенки, однако мы все равно будем воспринимать его цвет как синий. Происходит неосознаваемая психологическая коррекция восприятия цвета. Эту особенность называют памятью на цвета (цветовой памятью).

Также имеет значение исторический и социальный опыт. У разных народов количество «важных» цветов может быть различным, что отражается в языке и мышлении (см. обозначение цвета в разных языках) . В языке одного народа может быть множество названий для обозначения оттенков какого-либо цвета, важного для обыденной жизни или доминирующего в местной природной среде. В то время как представители другого народа могут вообще не замечать эти оттенки и не иметь для них названий.

Незначительное число людей страдают на расстройство восприятия цветов (дальтонизм): 0.02% не воспринимают цвета полностью, 1,78% мужчин не воспринимают зеленый, 1,08% - красный, невосприимчивость голубого крайне редкое явление. У женщин невосприятие цветов случается значительно реже.

Дополнительные (или противоположные) цвета являются парными, при смешивании они дают ахроматический цвет (воспринимаемый как черный, белый или серый - в зависимости от типа смешивания).

Насыщенность цвета определяет его слабое или сильное выражение, причем при слабом насыщении, например, как у розового, в котором есть много белого (то есть, «все» цвета). Впечатление от него «расплывчатое».


Эффект Бецольда: контраст линий влияет на восприятие яркости цвета

Яркость цвета дает информацию о мнимом «свечении» цвета, например, у желтого она больше, чем у темно-синего.

Как факторы поля различают разные действия плоскостей, поверхностей, оттенков пространства, зеркальных отражений, переливов, прозрачности и т.д.

Глубина видения также может зависеть от цвета - красный дом визуально «выдвигается» на передний план.

Т.н. иллюстрирует изменения цвета под влиянием контраста с линиями, которые его окружают.

При эффекте Пуркинье цвет меняется в зависимости от освещенности фона: на светлом выделяются зеленый и синий. Поэтому красные цвета в сумерках кажутся более темными, нежели зеленые, а в полутьме - практически черными, в то время как синие объекты «становятся» более светлыми. Это вызвано более высокой чувствительностью колбочек в сетчатке к желтому свету, тогда как палочки более чувствительны к синему, но при этом не могут обеспечить цветное зрение.

Температура цвета основывается на синестетичности «теплоты» или «холодности» цветов. Например, считают, что зеленый цвет успокаивает. Практическая психология цветов использует эти явления для психологического оформления помещений.

Символика восприятия цвета зависит от культурного и исторического бэкграунда. В восточных странах траурным цветом считают белый, в западных - черный, и т.д.

Насколько цвета влияют на наше мышление, демонстрирует эффект Струпа . Если названия цветов изобразить другими цветами или заполнить другими цветами фон, то распознавание названий цветов существенно затрудняется.


Эффект Струпа

Итак, что же «дают» людям цвета? Существование цветов не только делает мир более захватывающим, они:

  • дают дополнительную информацию о малоинформативных по форме предметах;
  • обозначают материалы по их материальному составу лучше, чем форма;
  • могут способствовать как маскировке, так и облегчению обнаружения объектов;
  • усиливают эмоциональное отношение к предметам.

Восприятие цвета - один из разделов психологии восприятия, связанный с основными проблемами зрительного восприятия. Цветовое зрение свойственно многим живым организмам, однако в большей степени оно развито у приматов. Схожим с человеком цветовым зрением обладают птицы, рептилии и земноводные, остальные же животные обладают весьма ограниченной способностью к различению цветовых оттенков.

Способность человека различать цвета имеет огромное значение для разных сторон его жизни, так как ощущение цвета часто сопровождается с разными эмоциональными реакциями. Гёте писал: «Опыт показывает, что желтый цвет производит исключительно теплое и приятное впечатление» , а также «цвета отрицательной стороны - это синий, красно-синий и синекрасный. Они вызывают неспокойное, мягкое и тоскливое настроение» . Цвета в значительно степени обогащают наш зрительный опыт; они играют важную роль в детекции и распознавании объектов окружающего мира. По данным нейрофизиологии цвет объекта помогает пациентам с разными агнозиями распознавать объекты .

Первые попытки понять природу цвета были предприняты еще древними индийскими, китайскими и античными философами, которые отмечали, что цвет характеризует важные отличительные признаки предметного мира. В связи с этим в работах восточных философов поднимаются вопросы о сущности и значении цвета, его месте в возникновении знания о мире, о роли органов чувств в возникновении ощущения цвета. Так, в раннем буддизме цвет есть атрибут материального мира, но эта категория используется косвенно, чтобы показать своеобразие нирваны как особого состояния ума. В собрании текстов раннего буддизма «Сутта-нитака» приводится такая аналогия: так же как существует знание о ветре, который нельзя показать при помощи цвета или формы, так же существует и знание о нирване как особом состоянии. Таким образом, можно сказать, что уже в раннем буддизме постулируется знание, получаемое из органов чувств, в том числе зрения, и, следовательно, обладающее цветом, а есть знание, не получаемое при помощи внешних источников информации, т.е. теоретическое знание (одним из таких знаний является понятие нирваны) .

В брахманизме также подчеркивается принадлежность цвета внешнего миру. В вайшешике цвет, наряду с запахом, вкусом, звуком, величиной, тяжестью, текучестью и др., является одним из атрибутов неделимых частиц ситу. В другом направлении брахманизма - Веданте - цвет также является признаком мира. В древнекитайской философии высказывается похожая мысль. Хань Фэй-Цзы (ок. 280-233 до н.э.), видный философ и политический мыслитель Древнего Китая, писал, что цвет используется для различения внешних образов вещей. Другой древнекитайский философ Мо-Цзы (ок. 480-400 до н.э.) отмечал, что ощущение цвета является одним из источников для знания о существовании мира: «слепой может произнести и знать слова “белый мрамор”, “черный уголь”, но не может различить их по цвету, поэтому слепой не знает, что такое белый мрамор и черный уголь, и не потому, что не знает названия этих вещей, а потому, что эти названия пустые для него: он не может указать и отличить эти предметы в природе» . В его работах предпринята попытка решения гносеологической проблемы истинности знания о мире.

Конечно, большую роль в становлении современной научной теории ощущения цвета сыграли работы европейских философов и арабских ученых. Первоначально, особенно в предфилософской мифологии Гомера, трудах древнегреческих философов подчеркивалось эстетическое значение цвета, его связь с основными стихиями и их покровителями - богами. Несмотря на такую метафорическую трактовку, в трудах греческих философов были сформулированы идеи, впоследствии легшие в основу современной психологии цветоощущения. Такими идеями являются связь цвета со светом, предметность цвета, понятие об основных и смешанных - производных - цветах и т.д.

Интересный факт отмечают исследователи цветоведения в античности, в частности К. Р. Мегрелидзе, В. Гладстоун и др. Во времена Гомера каждый греческий термин обозначал целую группу цветов. Для каждого поколения античных философов были характерны свои термины для описания цвета и только с течением времени в греческом языке начинают появляться новые слова для обозначения различных оттенков цвета, т.е. происходит дифференциация обозначающих терминов. Первоначально в греческом языке не было слов для обозначения самых очевидных с нашей точки зрения цветов, например зеленого. Авторы объясняют это тем, что античный человек «не видел» этих цветов, в смысле они среди всего многообразия свойств объектов мира не выделились, а следовательно, не отражались в сознании человека. И только по мере усложнения деятельности и форм психического взаимодействия с миром, древнегреческий человек начал «видеть» и обозначать в языке новые цвета.

Цвет - это категория, которая существенно зависит от культурного опыта человека. При этом уже в трудах ранних греческих философов можно найти попытки осмыслить природу цвета и цветоощущения. Анаксагор считал цвет свойствами частиц, из смеси которых образовался весь мир. Эмпедокл определил цвет как то, что подогнано к порам органа зрения . Он предложил одну из первых классификаций цветов, согласно которой существует четыре основных цвета - черный, белый, красный и желтый, соответствующих четырем стихиям (огню, воде, земле и воздуху). Все остальные цвета обусловлены определенными смесями элементов. Известный отечественный философ А. Ф. Лосев, анализируя тексты Эмпедокла, пишет, что есть свидетельство о знакомстве Эмпедокла с существованием родственных цветов, которые, смешиваясь, дают насыщенный цветовой оттенок, и так называемых дополнительных, или комплементарных, цветов . Наличие этих цветов составляет в настоящее время основу для аддитивной модели смешения цветов.

Большое значение для современной теории цвета имеет учение об ощущении Демокрита. Демокрит описывал процесс ощущения вообще следующим образом: от всех предметов мира происходит истечение частиц - атомов; этими истечениями Демокрит объясняет воздействие одного объекта на другой на расстоянии; не являются исключением и глаза человека. Видение осуществляется за счет сдавливания многочисленных испусканий (или истечений) от предметов и глаз . Считается, что эта теория положила начала геометрической оптике, изучающей в настоящее время отражение света от поверхностей.

Цвет, по Демокриту, есть факт субъективной жизни, в природе как таковой цвета не существует. По свидетельству Галена, Демокрит полагал, что «...в общем мнении существует цвет, в мнении - сладкое, в мнении - горькое, в действительности же [существуют только] атомы и пустота» . Все ощущаемые качества объекта, среди которых и его цвет, есть результат разного соединения разных по форме атомов. Ощущаемые качества объекта существуют постольку, поскольку есть тот, кто способен воспринимать их, а «...по природе же нет ничего ни белого, ни черного, ни желтого, ни красного, ни горького, ни сладкого» . Разные сочетания больших и маленьких, гладких, шероховатых, рыхлых, теплых и других атомов дают четыре основных цвета, к которым Демокрит, так же как и Эмпедокл, относил белый, черный, красный и желтый; остальные цвета являются сложными и появляются путем смешения простых .

У Эпикура цвет, так же как и форма, величина, тяжесть и др. есть постоянное свойство тела, благодаря которому это тело существует и познается. «Все эти свойства имеют свои специальные возможности быть познаваемыми и различаемыми (познаются отдельно и различаются), если только целое сопутствует им и никогда от них не отделяется, но вследствие совокупного представления свойств имеет название тела...»

Платон цвет рассматривает в сто связи со светом, а вернее огнем и пламенем. Цвет, по Платону, - «это пламя, струящееся от каждого отдельного тела и состоящее из частиц, соразмерных способности нашего зрения ощущать» . Особое значение в теории Платона имеет белый цвет, потому что все цвета образуются благодаря прохождению единого и белого луча света через некую среду. В своем диалоге «Тимей» Платон пишет, что цвет возникает, когда «с двух сторон встречаются два огня, причем один с молниеносной силой бьет из глаз, а другой входит в глаза и там угасает от влаги, из их смешения рождаются всевозможнейшие цвета» .

Говоря об античном цветоведении, нельзя обойти Аристотеля. Аристотелю приписывается специальный трактат «О цвете» , в котором он изложил основные взгляды на природу этого явления, характерные для его школы. Много внимания уделяется цвету и в трактатах «О душе» и «О чувственном восприятии». Аристотель пишет, что цвет является важной характеристикой мира, так как содержит в себе причину, почему он видим; цвет позволяет видеть предметы. Чтобы ответить на вопрос, что есть цвет, согласно Аристотелю, надо сначала ответить на вопрос, что есть свет: «нельзя видеть цвета без света, а всякий цвет каждого предмета видим при свете», поэтому, согласно Аристотелю, необходимо сначала ответить на вопрос, что есть свет . Свет описывается в философии Аристотеля через категорию прозрачности. Свет - это абсолютная, бесконечная и беспредельная прозрачность, говорит Аристотель, он невидим, но когда свет становится видимым, он уже является цветом. Цвет - это прозрачность в конечной степени, в материальной форме. Ощущение цвета возникает опосредованно через воздействие прозрачной среды на орган чувств - глаз. Среда выступает в роли передатчика воздействия цвета на человека. Свет распространяется в среде, и эта среда - так же как и сам свет - является важным условием ощущения цвета. «Цвет воздействовать непосредственно на чувство не может, - пишет Аристотель в трактате “О душе”, - он пребывает в некоторой среде, и для видения его необходимо, чтобы наличествовала эта среда: если же вместо нее будет пустота, то увидеть нельзя будет ничего» .

Аристотель подвергает анализу не только природу цвета как такого, но и говорит о происхождении разных цветовых оттенков. Цвета бывают основными (простыми) и смешанными. Основные цвета у Аристотеля также соотнесены с основными стихиями, в трактате «О чувственном восприятии» основных цветов, из которых получаются все остальные, всего два - это белый и черный. Способов, как разные оттенки получаются из основных цветов, тоже два. Первый способ состоит в расположении рядом двух цветов, и получаемое цветовое ощущение есть нечто иное - то, что присуще основным, но отличное от каждого. Второй способ получения цветовых оттенков - это наложение цветов друг на друга при использовании красок . Можно сказать, что Аристотель не так уж был далек от истины, говоря о смешении цветов. В настоящее время выделяют две модели смешения цветов - аддитивную и субтрактивную, и идеи, лежащие в их основе, очень схожи с аристотелевскими.

Завершить краткий обзор античных представлений о цвете можно анализом работ древнегреческих философов по проблеме цвета, который осуществил А. Ф. Лосев. Он отмечал, что цвет в античности рассматривается не сам по себе, а вместе с теми телами, для которых он характерен . Из указанного выше мы видим, что цвет есть результат внешнего воздействия па органы чувств, у Демокрита эта идея доведена практически до своего логического завершения: цвет (как впрочем и другие сенсорные качества) сведен до осязания. «Телесно-осязательная» позиция древнегреческих философов, по словам Лосева, при этом имеет большое значение для развития теории цвета. Анализ осязательных свойств предмета, приводимых к ощущению цвета, влечет открытие скрытых причин, которые могут приводить к появлению цвета; это позволяет устанавливать, где и как существует определенный цвет в природе. «...Осязательно-вещественный опыт красного цвета говорит нам о связи покраснения с нагреванием. Краснеем и мы сами, когда согреваемся; краснеют металлы, когда они накаливаются; само пламя - красное и горячее одновременно» . Несмотря на то, что связь между нагреванием как свойством физического тела и покраснением гораздо сложнее, чем предполагали античные философы, но мнению Лосева, предпринятые ими объяснения представляют собой попытку проникнуть в особую «сущность» такого факта как цвет, т.е. объяснить. Физика в настоящее время как наука о явлениях мира говорит нам, что цвет есть свойство этого мира и наше ощущение цвета во многом (но не во всем) зависит от этих свойств.

В Средневековой философии цвет перестает рассматриваться сам по себе как отдельно существующее качество или материя. Средневековый философ и богослов Иоанн Дамаскин утверждал, что цвет относится к тем качествам мира, которые не могу существовать сами себе, а только созерцается в субстанции, которая как бы материя вещей . Позже Фома Аквинский, разрабатывая свою теорию познания, выдвигает сенсуалистический принцип, согласно которому познание мира всегда начинается с чувственного познания отдельных свойств предметов, к которым относится и цвет. Анализируя проблему истинности познания, он отмечает, что чувственное восприятие и восприятие цвета в частности опосредовано интеллектуальными процессами. Цвет, являясь результатом зрительного восприятия, не существует сам по себе, а всего лишь как свойство конкретного предметаК

Большую роль в развитии современной теории цвета сыграли арабские ученые и философы Средневековья, заложившие основы оптики. Так, Аль- Кинди (IX в.) выдвинул идею о том, что все светящиеся тела испускают световые лучи во всех направлениях. Он был первым, кто объяснил голубой цвет неба рассеиванием солнечных лучей . Другой арабский ученый XI в. Альхазен сосредоточил свои усилия на разработке теории оптики, отделив ее от философии. Можно сказать, что именно он заложил основы современной оптики, и с этого момента начинается новый этап в развитии научных взглядов на природу цвета - научный, в котором философские воззрения иногда очень причудливо переплетаются с первыми попытками научного осмысления. Идеи Ибн ал-Хайсама относительно механизмов зрения намного предвосхитили работы европейских физиков. Ибн ал-Хайсам отвергает идею Демокрита о лучах, испускаемых глазом, по его мнению «зрительный образ получается с помощью лучей, испускаемых видимыми телами и попадающих в глаз» . Ибн ал-Хайсам описал анатомию глаза, выделив в нем хрусталик, роговицу, сетчатку, стекловидное тело и др. В своем семитомном труде «Книга об оптике» он писал, что цвет есть результат воздействия на глаз света: «Естественный свет и цветовые лучи воздействуют на глаза». Под естественным светом Ибн ал-Хайсам понимает белый солнечный свет, а под цветовыми лучами - свет, отраженный от цветных предметов. Ибн ал-Хайсам был первым, кто провел опыт по рассеиванию солнечного света с целью получения цветовых лучей, для этого он использовал заполненный водой шар. А впоследствии Аль- Ширази (XIII в.), его последователь, дал первое научное обоснованное объяснение радуги как явления, возникающего вследствие того, что солнечные лучи попадают на маленькие капли воды, которые остаются в воздухе после дождя. Эти лучи многократно отражаются и становятся видимыми для глаза . По значимости для теории цветовосприятия эти опыты можно сравнить только с работами Ньютона, о которых мы скажем позже. В XII в. работы Ибн ал-Хайсама проникли в Европу, где были развиты уже европейскими физиками и математиками. Важную идею касательно ощущения цвета выдвигает другой арабский мыслитель - Ибн Сипа: цвет - переживание субъективное, возникающее в результате восприятия предмета сначала внешним чувством, а затем уже внутренним чувством. Здесь звучит мысль, что ощущение цвета - эго не только работа внешних по отношению к сознанию человека механизмов, цветовосприятие - это сложный процесс, и вопросы появления ощущения в сознании не менее важны, чем проблемы преобразования действующего света .

Говоря об историческом развитии современных представлений о цвете, стоит упомянуть мыслителей Ренессанса и Нового времени. В работах материалистов того периода цвет сам но себе - это не качество внешнего мира, а продукт человеческого сознания, его истинная природа - скорее физическая, чем психическая. Эта идея была сформулирована в работах Декарта и Галилея, развита у Гоббса, Спинозы, Кондильяка, Локка, Беркли и др. Галилей пишет: «...вкусы, запахи, цвета и т.д. являются по отношению к субъектам не чем иным, как только пустыми именами и имеют своим источником только ваши чувства. С устранением живого существа были бы одновременно устранены и уничтожены все эти качества», а затем добавляет: «...многие из тех ощущений, которые считались качествами, присущими внешним предметам, имеют свое действительное существование в нас, а не в них» . Эта идея была развита Декартом в положении, что цвет - это атрибут нашего мышления, а происходят все цвета от взаимодействия лучей и окрашенных тел, когда отраженный от окрашенной поверхности свет попадает на глаз .

В дальнейшем философы XVII и XVIII вв. (Гоббс, Спиноза, Кондильяк и пр.) еще больше усугубили разрыв между физической природой цвета и его субъективным ощущением. У Джона Локка это нашло выражение в идее разделения всех качеств предмета на первичные и вторичные: первичные - это объективные качества тела (объем, форма, число, расположение и движение, покой частиц и др.), вторичные - это силы, способные при помощи первичных качеств вызывать у человека субъективные ощущения, идеи цвета, звука, вкуса, запаха и др. Другими словами, Локк говорит, что есть опыт ощущения и есть опыт рефлексии этих ощущений. В этом вопросе с Локком спорит Этьен Кондильяк, отмечая, что есть только один источник знания о мире - это наши ощущения и ощущение цвета не является тут исключением. В своем трактате об ощущениях он пишет: «главная задача предлагаемого труда - показать, каким образом все паши знания и все наши способности происходят из органов чувств или, выражаясь точнее, из ощущений, ибо на самом деле органы чувств лишь окказиональная причина [ощущений]. Они не чувствуют - чувствует только душа, повод к чему ей дают органы чувств, и из модифицирующих ее ощущений душа извлекает все свои знания и способности» .

Говоря о науке этого периода, нельзя обойти стороной естественнонаучные достижения в области цветоведения. Существенный вклад в изучение цвета внес английский физик Исаак Ныотон, заложивший основу современным работам по цветовому зрению. В 1676 г. Ньютон произвел в Кембридже опыт разложения белого цвета призмой (рис. 4.1). Через маленькое круглое отверстие в ставне окна в затемненную комнату проникал луч света. На его пути Ныотон ставил стеклянную трехгранную призму, и пучок света преломлялся в призме. На экране, стоявшем за призмой, появлялась разноцветная полоса, которую Ньютон назвал «спектром» (от греч. spectrum - смотрю). В этом опыте Ньютону удалось подтвердить воззрения Декарта, что объекты, на которые падает свет, не производят цвет и падающим лучам свойственна определенная способность возбуждать в нас ощущение того или иного цвета. Мы видим красный цвет какого-то объект, потому что поверхность того объекта отражает лучи, как говорит Ньютон, «способные к красноте». В своем труде «Оптика» Ньютон писал: «...лучи, если выражаться точно, не окрашены. В них нет ничего другого, кроме определенной силы или предрасположения к возбуждению того или иного цвета» .

Рис. 4.1.

Следуя традиции, Ньютон в спектре выделил семь цветов (красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый), не считая белого и черного. Он предложил расположить все цвета спектра в круг, который получил название цветового круга Ньютона (рис. 4.2). Цвета на этом круге переходят из одного в другой, также интенсивность цвета уменьшается но направлению к центру круга и является максимальной на периферии круга. Ньютон установил также, что, смешав семь цветов спектра, можно вновь получить белый цвет. Для этого он поместил на пути разложенного призмой цветного пучка (спектра) двояковыпуклую линзу, которая снова налагает различные цвета один на другой; сходясь, они образуют на экране белое пятно.

Рис. 4.2. Цветовой круг Ньютона: основные цвета спектра, границы между

которыми условны

Труды Ньютона оказали большое влияние на современное понимание природы цвета, так как он впервые показал, что цвет - это свойство нашего восприятия. Но он был не единственным ученым, кто заложил естественнонаучные основы восприятия цвета. Большая заслуга в обосновании теории цветного зрения принадлежит гениальному русскому ученому М. В. Ломоносову. Изучению теории цветов способствовали работы Ломоносова по изготовлению крашеных стекол. Ломоносов в 1757 г. выдвинул идею, которая впоследствии легла в основу трехкомпонентной теории цвета.

Причину света Ломоносов видел в его физико-химической природе, определял как колебательные и «коловратные» движения эфира. В этом эфире Ломоносов выделял три типа частиц - тяжелые, средние и легкие. В соответствии с различными видами частиц эфира, отличающимися по размерам, Ломоносов выделяет три основных «простых» цвета: «...от первого рода эфира происходит цвет красный, от второго - желтый, от третьего - голубой. Прочие цветы рождаются от смешения первых» . Также Ломоносов постулировал существование трех типов материи, соответствующих типам частиц: тяжелым - ртутная материя, средним - серная, легким - соляная. Ломоносов объясняет взаимодействие частиц с материей как получение цвета: разные комбинации - разные цвета. Все остальные цвета Ломоносов расценивает как вторичные, «смешанные», возникающие на основе вышеуказанных базовых цветов.

В XIX в. появилась теория цветового зрения Томаса Юнга (1773-1829), которая утверждала, что для получения любого цвета необходимо три базисных цвета. Зрительная система имеет три приемника, воспринимающих цвет. Похожую идею высказал Герман фон Гельмгольц (1821 - 1894), в настоящее время теория называется трехкомпонентной теорией Юнга - Гельмгольца. В качестве критики трехкомпонентной теории немецкий физиолог Э. Геринг (1834-1918) выдвинул теорию оппонентных цветов, согласно которой цветовое восприятие основано на антагонизме некоторых цветов. Теории Юнга - Гельмгольца и Геринга отмечают начало современного этапа в изучении цветового восприятия. Далее эти теории будут рассмотрены более подробно. Особенно возрос интерес к проблеме цветового зрения в XX в. Это связано с развитием светотехники, электронно-вычислительной техники, аэрофотосъемки местности и др.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.